
Training for Security: Planning the Use of a SAT in

the Development Pipeline of Web Apps

Sabato Nocera, Simone Romano, Rita Francese, Giuseppe Scanniello

University of Salerno, Italy

{snocera, siromano, francese, gscanniello}@unisa.it

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—We designed a prospective empirical investigation
to study our STW (Software Technologies for the Web) course
with respect to the training of bachelor students in the context
of software security when developing e-commerce Web apps. To
that end, we devised the following steps: (i) studying the state of
the students enrolled in the STW course in the a.y. (academic
year) 2021-22; (ii) defining a training plan for the a.y. 2022-23;
and (iii) acting the plan and measuring the differences (if any)
between the students of the a.y. 2021-22 and 2022-23. In this
idea paper, we present the results of the former two steps, as
well as the evaluation strategy of the proposed training plan.
We observed that security concerns are widespread in the code
of the Web apps the students of the STW course (a.y. 2021-22)
developed. Therefore, we plan (second step) to ask the students
of the STW course (a.y. 2022-23) to use in their development
pipeline a Static Analysis Tool (SAT) to detect security concerns.

Index Terms—Software security, Static analysis tool, Web app

I. INTRODUCTION

Security concerns (aka security issues and software vulner-

abilities) are flaws in the computational logic of software sys-

tems that, if exploited, would negatively impact software se-

curity in terms of confidentiality, integrity, and/or availability.

The economic impact of security concerns can be catastrophic:

for example, eWEEK estimated that Heartbleed—a software

vulnerability in the popular OpenSSL cryptography library—

has costed at least 500 million USD to companies [1]. While

the introduction of some security concerns in the source code

is unavoidable (e.g., because a certain vulnerability is still

unknown), others can be fixed before the delivery of software

systems (or even developers could avoid their introduction).

Web apps are not immune to security concerns and very often

are not tested for security before being deployed (less than

50% are tested) [2].

Nowadays, supporting tools are available to help developers

to identify and then fix security concerns before the delivery

of software systems. Depending on the kind of analysis per-

formed by these supporting tools, we can distinguish between

dynamic and Static Analysis Tools (SATs). The former analyze

software systems at run-time, while the latter examine the code

of software systems without executing them. There are three

scenarios in which developers can leverage SATs to identify

and then fix security concerns [3]: (i) while developers code,

by highlighting the presence of security concerns directly in

IDEs (Integrated Development Environments); (ii) within a

Continuous Integration (CI) pipeline, which could make a

build fail if the code is not compliant with given security

rules (e.g., the committed code must not contain critical

vulnerabilities); and (iii) during a code review.

In this idea paper, we propose a training plan, whose main

goal is to provide evidence on the following question: Does

the use of a SAT help bachelor students in Computer Science

(CS) to better deal with software security in the development

pipeline of Web apps? To answer this question, we defined a

prospective empirical investigation consisting of the following

steps: (i) studying the behavior of bachelor students in CS

enrolled in the STW (Software Technologies for the Web)

course in the a.y. (academic year) 2021-22 with respect to

software security when developing Web apps; (ii) defining a

training plan, based on the use of a SAT, to allow bachelor

students enrolled in the STW course (a.y. 2022-23) to improve

their behavior towards software security when developing Web

apps; and (iii) experimenting that training plan and measuring

the differences (if any) in students’ behavior towards software

security between the a.y. 2021-22 and 2022-23. In this paper,

we present the results of the former two steps, as well as the

evaluation strategy of the proposed training plan. We observed

that security concerns are widespread in the code of the Web

apps the students developed as mandatory projects of the STW

course (a.y. 2021-22). Based on this finding, we can postulate

that the students are not adequately equipped to develop secure

Web apps. Therefore, we plan a training intervention in which

the bachelor students of the STW course (a.y. 2022-23) are

equipped with SonarLint, a SAT plugged into their IDE, to

identify security concerns in their Web apps and then fix them

as soon as possible in the development pipeline.

Paper Structure. In Section II and Section III, we outline

related work and SonarLint, respectively. We present our

contribution in Section IV, while we show and discuss the

results in Section V. Final remarks conclude the paper.

II. RELATED WORK

Recruiting people skilled in software security is a very hard

task due to the shortage of these skills: the workforce gap

is around 402,000 in North America and 199,000 in Europe,

including 33,000 in the UK [4]. According to a study by

McAfee, only 7% of the top universities (in the eight countries

studied) offer an undergraduate major in cybersecurity [5].

Lam et al. [6] observed through a survey (involving 21 CS

students from two US universities) that secure programming

is not a mandatory skill: many security concerns can be



easily detected and do not require security experts to be

fixed. Therefore, a chip and easy solution to the skill shortage

in software security is to teach security topics across all

courses of a CS program [7]. In this way, secure programming

may be inserted into the CS curriculum since the beginning

classes [8]. Almansoori et al. [9] reported that this rarely

happens, and students graduate with scarce or no secure

programming knowledge. Also, Taeb and Chi [10] highlighted

the gaps that exist in the current cybersecurity education and

training landscape and proposed a framework to guide future

professionals in developing secure software.

Web apps are particularly subject to attacks that can exploit,

for example, flaws in the code or poorly-configured Web

servers [11]. The problem could become even more relevant

for e-commerce Web apps, which ask bank accounts and and

personal information. If an attack to an e-commerce Web

app succeeds, the effect on the reputation and credibility

of such a Web app could be dramatic and the economic

effects catastrophic. Thus, there is a need to integrate se-

curity practices into the development pipeline of Web apps

and to have developers adequately trained to develop secure

Web apps. Due to the shortage of security skills, it is de-

sirable to train the next generation of Web developers by

considering security not only as a simple add-on. To fill

this gap, Zhu et al. [12] proposed and then experimented,

in a Web development course, the use of ASIDE, a plug-

in for Eclipse providing instant security warnings together

with a description of the corresponding security concerns.

The authors also conducted a preliminary observational study

involving 20 students and the results provided some evidence

that ASIDE could potentially help secure programming in the

context of programming assignments. Similarly, Tabassum et

al. [13] proposed an Eclipse plug-in, named ESIDE, to provide

instant security warnings while coding. To compare ESIDE

against a similar approach utilizing person-to-person feedback

on security concerns (referred to as a security clinic), the

authors conducted two studies in which took part 36 students.

The participants in the studies accomplish programming tasks,

which took 15 to 20 minutes, and then filled out a survey. The

results indicated that both ESIDE and security clinic suffered

from challenges in incentivizing students to incorporate secure

programming techniques into their code.

We based our training plan on past evidence (e.g., [6],

[9], [10], [12]). Specifically, we postulated that there is a gap

in the education and training landscape with respect to the

development of secure software. We gather further evidence

on this respect and design a plan to fill this gap in the context

of Web-app development. As for the differences between

our proposal and past research, the most remarkable ones

follows: (i) we focus on e-commerce Web apps developed

with Java-based technologies; (ii) we consider a large number

of e-commerce Web apps (i.e., 45) developed in teams by

a total of 120 bachelor students; (iii) we plan a training

intervention to fill the shortage of software security skills in

Web-app development; and (iv) we plan to use in our training

intervention a SAT, SonarLint, popular among developers.

III. SONARLINT

SonarLint is a popular SAT (e.g., on the Eclipse market-

place, SonarLint appears in the top ten of the most installed

plug-ins of all time [14]). It allows developers to verify the

compliance of their code against a pre-defined set of rules

defined for 29 languages, including Java and JavaScript. When

the analyzed code violates a rule, SonarLint generates an

issue. SonarLint’s issues are classified according to three qual-

ity characteristics: reliability, maintainability, and security—

in our idea paper, we are interested in the security quality

characteristic only. Security concerns—i.e., hotspots (security-

sensitive code) and vulnerabilities (security concerns requiring

immediate action)—are the kind of issues that SonarLint uses

to rate the security quality characteristic. A severity level is

also assigned to any kind of issue, security concerns included.

From the least to most severe, these severity levels are: minor,

major, critical, and blocker.

Developers can leverage SATs in three scenarios: (i) while

coding in the IDE, (ii) within a CI pipeline, and (iii) during

a code review. SonarLint is conceived to support the sce-

nario (i) since it is available as a plug-in for the most popular

IDEs (e.g., Eclipse, IntelliJ IDEA, Visual Studio, etc.). Once

SonarLint is plugged into an IDE (e.g., Eclipse), it highlights

vulnerabilities and hotspots (and other kinds of issues, which

can be disabled) in real time. SonarLint also provides a

detailed description of the identified security concerns as well

as tips on how to fix them. In our training intervention, we

plan to use SonarLint because: (i) we want to push students to

fix security concerns like vulnerabilities or hotspots as soon as

possible in the development pipeline; (ii) due to its popularity,

SonarLint is likely to be used by CS students in the future

(i.e., once graduated); (iii) SonarLint is continuously updated

to support the detection of new security concerns.

IV. STUDY DESIGN

To plan our study, we followed the guidelines for exper-

imentation in Software Engineering (SE) [15], [16]. In the

following of this section, we describe the study design.

A. Goal

We formalized the goal of our study, through the GQM

(Goal/Question/Metric) template [17], as follows:

Analyze the use of a SAT (integrated into an IDE) for the

purpose of evaluating its effect with respect to software

security from the point of view of educators, researchers,

and practitioners in the context of bachelor students in CS,

who develop Web apps with Java-based technologies.

Based on the above-mentioned goal, we formulated the fol-

lowing Research Questions (RQs).

RQ1. Are students equipped to manage the challenges asso-

ciated with software security when developing Web apps?

This RQ aims to study whether, and to what extent, bachelor

students take care of software security when developing Web

apps by using Java-based technologies. If the code of these

Web apps contains security concerns, we can postulate that



students are not equipped to manage the challenges associated

with software security, and thus corrective actions are needed.

RQ2. To what extent does the use of a SAT in an IDE affect

software security when developing Web apps?

This RQ aims to study whether, and to what extent, the use of

a SAT (SonarLint), integrated into an IDE (Eclipse), improves

the security of Java-based Web apps. If we observe that the

number of security concerns is inferior when using a SAT

(with respect to not using it), we can speculate that there is an

improvement in the students’ equipment to manage software

security in the development of Web apps. This RQ has been

defined here, but we will answer it when the last part of our

training plan is concluded.

B. Context

The context of our study is represented by bachelor students

in CS taking the STW course in the a.y. 2021-22 and 2022-23.

The course is scheduled in the second semester of the second

year of the CS program. It alternates theoretical and practical

lessons, and covers the following topics: HTTP(S); HTML

and CSS; Java-based technologies for Web development like

Servlets, JavaBeans, and JSPs; MVC pattern for Web apps;

authentication and access control; JavaScript and DHTML;

XML and JSON; and AJAX. The reference IDE of the course

is Eclipse. To pass the exam of STW, the students are asked to

pass a written test and then carry out a project. To carry out the

project, the students can choose to work in a team (composed

of two to four members) or alone (i.e., one-person team). The

project consists of an e-commerce Web app. Each team is

free to choose the e-commerce Web app to be implemented;

however, each implemented e-commerce Web app must at least

implement the following functional requirements:

• allowing customers and administrators to log-in and -out;

• allowing customers to sign-up, navigate the catalogs of

items (i.e., products or services), add items to the cart, buy

items, and check own orders;

• allowing administrators to manage the catalogs of items

(e.g., modifying items) and customers’ orders.

Further functional requirements are welcome especially for

larger teams. Also, each e-commerce Web app must use the

MVC pattern, interact with a database, and use the technolo-

gies presented in the course (e.g., Servlets, DHTML, etc.).

Before implementing the Web app, each team is asked to

design that app and write a document, including: (i) high-

level description of the Web app; (ii) market study of pos-

sible competitors; (iii) functional requirements; (iv) database

schema; (v) navigation schema; and (vi) page template, theme

and color pallet.

To answer RQ1, we use the projects delivered by the

students of the STW course in the a.y. 2021-22, namely

45 e-commerce Web apps developed in teams by a total of

120 students. As for RQ2, we plan to use the projects delivered

by the students enrolled in that course for the a.y. 2022-23.

C. Intervention and Measurements

The intervention of our study—needed to study RQ2—

consists of providing the students (of the STW course) of

the a.y. 2022-23 with a SAT, SonarLint, highlighting secu-

rity concerns directly in the IDE. The training intervention

includes lessons on SonarLint and on how to fix the security

concerns—i.e., hotspots and vulnerabilities—this SAT identi-

fies. Therefore, these students are asked to use SonarLint when

developing the mandatory project of the STW course (i.e., an

e-commerce Web app). On the contrary, the students of the

a.y. 2021-22 did not use any SAT to carry out their project.

In both RQ1 and RQ2, we planned to quantify software

security in terms of the security concerns—i.e., hotspots and

vulnerabilities—SonarQube identifies in the Web apps devel-

oped by the students as mandatory projects to pass the STW

course. SonarQube is a popular SAT among developers and it

has been receiving an increasing interest from the SE research

community (e.g., [18]–[21]). Both SonarQube and SonarLint

are developed by SonarSource, and share the same security-

concern detector—i.e., SonarQube and SonarLint detect the

same hotspots and vulnerabilities. While SonarLint works

within the IDE, SonarQube is conceived to be integrated into

a CI pipeline or to support code reviews. We used SonarQube

to quantify the software security construct because, unlike

SonarLint, it is possible to automatize the extraction process

of security hotspots and vulnerabilities. To deal with threats to

construct validity, we will not disclose to the students of the

a.y. 2022-23 any information about our study goal, including

the measurements based on SonarQube. Similarly, the students

of the a.y. 2021-22 did not know such information.

D. Design and Experimental Procedure

We designed a before-after prospective study. We first

measured the security hotspots and vulnerabilities the students

introduced in their e-commerce Web apps at the time T0—i.e.,

before the intervention and with bachelor students enrolled in

the STW course, a.y. 2021-22—and then at the time T1—i.e.,

after the intervention and with bachelor students enrolled in

the STW course, a.y. 2022-23.

The experimental procedure consists of the following steps.

1) The students enrolled in the STW course (a.y. 2021-22)

had to design and develop, in teams, e-commerce Web apps

using Java-based technologies. We informed the students

that the gathered data would be treated confidentially and

anonymously shared for research purposes only.

2) The data gathered at the step 1 revealed that the students

(a.y. 2021-22) did not take care of security hotspots and vul-

nerabilities when developing their e-commerce Web apps.

Therefore, we defined our training intervention, consisting

of providing the students (a.y. 2022-23) with SonarLint (as

previously described in Section IV-C).

3) The students of STW (a.y. 2022-23) will be asked (to design

and) develop e-commerce Web apps (using Java-based tech-

nologies) with the support of SonarLint. This (mandatory)

teaching activity has a two-fold pedagogical goal: let the

students familiarize with both the presented technologies



TABLE I: Some descriptive statistics.

Metric Mean SD Min Median Max Total

KLOC* 13.48 17.18 1.08 9.01 103.33 606.5
#JavaFiles 39.33 17.49 10 37 100 1,770
#JSPFiles 22.47 7.85 3 22 37 1,011
#JavaScriptFiles 5.31 6.32 0 3 31 239
#CSSFiles 8.91 9.23 1 6 49 401
#SecurityHotspots 41.78 25 6 38 103 1,880
#Vulnerabilities 0.04 0.3 0 0 2 2

* It stands for Kilos of Lines of Code, excluding comments and white spaces.

and the challenges associated to software security. The

students who will take part in this step are different from

those who took part in the step 1 and, therefore, we will

inform them that their data would be confidentially treated

and anonymously shared.

While developing the Web apps, the students of the a.y. 2021-

22 were encouraged to push the local code changes to their

remote Git repository. We will ask the same to the students of

the a.y. 2022-23. The step 1 of the procedure corresponds to

T0, while the step 3 to T1. In this idea paper, we present the

results at T0 and introduce the corrective actions of the step 2

of our procedure. This is to say that T1 is needed to evaluate

our training proposal (defined at the step 2).

V. RESULTS AND DISCUSSION

Our preliminary results and implications are below, as well

as possible threats to validity. Raw data are online [22].

A. Analysis of the Results

In Table I, we report some descriptive statistics—i.e., mean,

Standard Deviation (SD), minimum (min), median, maximum

(max), and total—of the 45 Web apps the students of STW

developed in the a.y. 2021-22. These descriptive statistics

concern the size of these apps (e.g., KLOC or #JSPFiles) and

the number of detected security hotspots and vulnerabilities.

The Web apps contain a total of 1,882 security concerns

(1,880 security hotspots plus 2 vulnerabilities). The average

number of security hotspots is approximately equal to 42,

while the median value is 38; however, taking into account that

the SD value is 25, the number with which security hotspots

appear in the Web apps is quite variable. The max and min

values recorded in the apps are 103 and 6, respectively. Since

security hotspots are code fragments that may pose critical

security threats, it is necessary to carefully analyze them to

understand to what extent they can cause actual threats to the

security of a Web app. To that end, we show in Table II

the complete list of violated security rules along with the

number of security concerns (hotspots and vulnerabilities)

and their severity level. We can observe that the security

concern most present is: delivering code in production with

debug features activated. This security concern has a minor

severity level and would allow attackers to easily acquire

detailed information on the running system, app, and users.

For example, Throwable.printStackTrace() prints a Throwable

and its stack trace to System.Err (by default), which can expose

sensitive information. Other security concerns largely present

TABLE II: Summary of the violated security rules.

Security Concern # Severity Type

Delivering code in production with debug 973 Minor Security Hotspot
features activated
Formatting SQL queries 297 Major Security Hotspot
Disabling resource integrity features 283 Minor Security Hotspot
Using slow regular expressions 149 Critical Security Hotspot
Hard-coded credentials 78 Blocker Security Hotspot
Using pseudorandom number generators 62 Critical Security Hotspot
Authorizing an opened window to access 31 Minor Security Hotspot
back to the originating window
Using clear-text protocols 4 Critical Security Hotspot
Dynamically executing code 2 Critical Security Hotspot
Encryption algorithms should be used 1 Critical Vulnerability
with secure mode and padding scheme
Cipher algorithms should be robust 1 Critical Vulnerability
Using weak hashing algorithms 1 Critical Security Hotspot

TABLE III: Total number of violated rules by severity level.

Minor Major Critical Blocker

1,287 297 220 78

in the code of the analyzed apps are: formatting SQL queries,

disabling resource integrity features, and using slow regular

expressions. These security concerns regard, respectively, the

formatting of SQL strings that can lead to SQL injection, the

absence of integrity checks on the external resources used

(e.g., CDNs), and the use of regular expressions with nonlinear

complexity that can be exploited to cause a Denial-of-Service

(DoS) of the Web app. The severity of these security concerns

ranges from minor to critical. A more comprehensive descrip-

tion of security hotspots and vulnerabilities can be found in

the SonarQube documentation [23].

In Table III, we show the total number of violated rules

aggregated by severity level. We can observe that blocker

and critical security concerns account for, respectively, 4%

and 12% of the total. The 78 security concerns, classified as

blocker, are all hard-coded credentials (see Table II). This

means that intruders can easily extract sensitive information

from source or binary code. The results shown in Table

III also indicate that security concerns (even those blocker

and critical) are widespread in the analyzed Web apps. In

Figure 1, we show a line plot of one of the studied Web

apps depicting how the number of security concerns changes

across the commit history. We observe that the number of

security concerns increases with the number of commits. This

trend is nearly the same for all 45 Web apps. A postulation

for this trend (at time T0) is that either students were not

accustomed to developing secure Web apps or there is a

gap in the education and training landscape with respect to

the development of secure software. To get some insights

on this postulation, we conducted an unstructured interview

with a few students enrolled in the STW course (a.y. 2021-

22). We randomly sampled six students among those who

participated in the 45 projects (at most one student for each

project), then we asked the sampled students the following

question: The code of the Web app you developed included

some security concerns, why did you not pay attention to this

aspect in your development pipeline? Based on the gathered



0 100 200 300 400

0

20

40

60

Commit Number

N
u

m
b

e
r 

o
f 

S
e

c
u

ri
ty

 C
o

n
c
e

rn
s

Fig. 1: Security concerns per commit of one project.

answers, we can sketch the following outcomes: (i) students

did not use SATs in their development pipeline (e.g., IDE)

to detect security concerns; (ii) the development of secure

Web apps was not considered as a mandatory requirement;

and (iii) there is a will to better approach security in the

development of Web apps. To deal with some threats to the

validity of these qualitative outcomes we: (i) conducted the

interviews after the students had passed the STW exam so

that they were encouraged to answer sincerely; (ii) did not

impose any time limit to answer the question and provide their

perspective on the development of secure Web app; (iii) asked

for clarifications only when strictly needed. The number of

interviewees might pose another threat to validity. However,

Johnson et al. [24] observed that a sample of six interviews

may be sufficient to allow the development of meaningful

themes and useful interpretations.

B. Threats To Validity

To determine the threats that might affect the validity of our

study, we followed the guidelines by Wohlin et al. [16].

Threats to Internal Validity. We could not monitor, at T0,

the students while accomplished the projects since developing

e-commerce Web apps requires several working hours. How-

ever, we checked the delivered Web apps against plagiarism

and no issue emerged; also, each team had to discuss its project

at the delivery time with the course lecturers. We plan to do

the same at T1. There might also be a selection threat due to

the natural variation of the involved students at T0 and T1.

Threats to Construct Validity. There might be a threat

of restricted generalizability across constructs at T1—i.e.,

while we might find a positive effect of using a SAT on

software security, there might be side effects on unconsidered

constructs. Finally, although we did not disclose (and will not

disclose) our research goal to the students, they might try to

guess it and adapt their behavior based on their guess (threat

of hypotheses guessing).

Threats to Conclusion Validity. We planned to involve stu-

dents taking the same course (albeit in two different academic

years), so having similar backgrounds and skills. Therefore,

we mitigate a threat of random heterogeneity of participants.

Also, the students at T1 will undergo a training to make

them as more homogeneous as possible in terms of SonarLint

usage and behavior toward software security. A threat of

reliability of treatment implementation might occur at T1—

e.g., some participants might follow the tips to deal with

security concerns more strictly than others.

Threats to External Validity. The kind of participants (at

both T0 and T1) poses a threat of interaction of selection

and treatment—i.e., the results might not be generalized to

any kind of student (or developer). The kinds of projects (at

both T0 and T1) might represent another threat to external

validity: interaction of setting and treatment. However, e-

commerce Web apps are really widespread nowadays. Finally,

we acknowledge that our results might not be generalized to

a SAT different from SonarLint.

C. Implications

We observe a lack of skills in software security among the

bachelor students of the a.y. 2021-22, and this is consistent

with past evidence [5], [9], [12]. To deal with this lack,

bachelor programs have been including security courses, but

very often these courses do not provide practical means to

let students deal with security concerns in their code [10].

This is what we learned from the first part of our study.

We acknowledge this gap and will act as follows: (i) training

students on how to deal with security concerns and (ii) pro-

moting the use of a SAT, SonarLint, to identify their presence.

Our outcomes are clearly relevant to educators, but also to

researchers interested to develop linters that better detect

security concerns and possibly suggest how to deal with them

in the IDE. Researchers could be also interested to study

to what extent the use of these tools actually improves the

students’ behaviors with respect to software security.

Bachelor students are not accustomed to developing secure

Web apps. This result might be of interest to practitioners.

In particular, they could be interested in knowing that junior

developers (new hires) need to be adequately trained before

being put in the production pipeline of Web apps. The second

stage of our training plan goes in that direction and aims

to share with the community an estimation of how this gap

can be filled from a quantitative perspective when using

SonarLint. We also plan to gather qualitative data from the

participants (i.e., students of STW, a.y. 2022-23) to identify

strengths/limitations concerning the SonarLint adoption in the

development of secure Web apps.

VI. CONCLUSION

We present an idea paper whose goal is to first under-

stand if our Computer Science bachelor students, enrolled

in the Software Technologies for the Web (STW) course,

were equipped to handle security concerns in the Web apps

they developed. Our outcomes suggest that a training plan

is required because students do not pay attention to security

concerns when developing Web apps. Therefore, we devised

(as the second stage of our research) a training plan for the

students of the next academic year of the STW course in order

to improve students’ behaviors towards security concerns.

This training plan is based on the use of SonarLint—a Static

Analysis Tool (SAT) that detects security concerns—and tips

to fix security concerns. In the third stage of our research, we

will implement and then evaluate our training plan. We believe

that this plan will allow having new hires better trained on

software security, and easier to insert into the job market.



REFERENCES

[1] eWeek. (2020) Heartbleed ssl flaw’s true cost will take time to tally.
[Online]. Available: http://archive.today/IMt3t

[2] Ponemon Institute LLC. (2015) The cost of web application attacks.
[Online]. Available: https://www.openreality.co.uk/wp-content/uploads/
2015/08/2015-ponemon-institute-the-cost-of-web-application-attacks.
pdf

[3] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman, “How developers engage with static analysis tools in
different contexts,” Empir. Softw. Eng., vol. 25, no. 2, pp. 1419–1457,
2020.

[4] P. Muncaster. (2021) Global security skills shortage falls to 2.7 million
workers. [Online]. Available: https://www.infosecurity-magazine.com/
news/global-security-skills-shortage/

[5] Center for Strategic and International Studies. (2016) Hacking the
skills shortage a study of the international shortage in cybersecurity
skills. [Online]. Available: https://www.mcafee.com/enterprise/en-us/
assets/reports/rp-hacking-skills-shortage.pdf

[6] J. Lam, E. Fang, M. Almansoori, R. Chatterjee, and A. G. Soosai Raj,
“Identifying gaps in the secure programming knowledge and skills of
students,” in Proceedings of Technical Symposium on Computer Science

Education V. 1. ACM, 2022, pp. 703–709.
[7] G. White and G. Nordstrom, “Security across the curriculum: using

computer security to teach computer science principles,” in Proceedings

of National Information Systems Security Conference, 1996, pp. 483–
488.

[8] C. E. Irvine and S.-K. Chin, “Integrating security into the curriculum,”
Computer, vol. 31, no. 12, pp. 25–30, 1998.

[9] M. Almansoori, J. Lam, E. Fang, K. Mulligan, A. G. Soosai Raj,
and R. Chatterjee, “How secure are our computer systems courses?”
in Proceedings of Conference on International Computing Education

Research. ACM, 2020, pp. 271–281.
[10] M. Taeb and H. Chi, “A personalized learning framework for software

vulnerability detection and education,” in Proceedings of International

Symposium on Computer Science and Intelligent Controls. IEEE, 2021,
pp. 119–126.

[11] T. Srivatanakul and F. Annansingh, “Incorporating active learning activ-
ities to the design and development of an undergraduate software and
web security course,” Comput. Educ. J., vol. 9, no. 1, pp. 25–50, 2022.

[12] J. Zhu, H. R. Lipford, and B. Chu, “Interactive support for secure
programming education,” in Proceeding of Technical Symposium on

Computer Science Education. ACM, 2013, pp. 687–692.
[13] M. Tabassum, S. Watson, B. Chu, and H. R. Lipford, “Evaluating two

methods for integrating secure programming education,” in Proceedings

of Technical Symposium on Computer Science Education. ACM, 2018,
pp. 390–395.

[14] Eclipse. (2022) Eclipse marketplace metrics. [Online]. Available:
https://marketplace.eclipse.org/metrics

[15] N. Juristo and A. M. Moreno, Basics of Software Engineering Experi-

mentation. Kluwer Academic Publishers, 2001.
[16] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wessln, Experimentation in Software Engineering. Springer, 2012.
[17] V. R. Basili and H. D. Rombach, “The tame project: Towards

improvement-oriented software environments,” IEEE Trans. Softw. Eng,
vol. 14, no. 6, p. 758–773, 1988.

[18] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou, “How do developers fix issues and pay back technical debt in
the apache ecosystem?” in Proceedings of International Conference on

Software Analysis, Evolution and Reengineering, 2018, pp. 153–163.
[19] D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, and

G. Pinto, “Are static analysis violations really fixed? a closer look at
realistic usage of sonarqube,” in Proceedings of International Confer-

ence on Program Comprehension. IEEE, 2019, pp. 209–219.
[20] M. T. Baldassarre, V. Lenarduzzi, S. Romano, and N. Saarimäki, “On

the diffuseness of technical debt items and accuracy of remediation time
when using sonarqube,” Inf. Softw. Technol., vol. 128, p. 106377, 2020.

[21] D. Pina, A. Goldman, and C. Seaman, “Sonarlizer xplorer: A tool to
mine github projects and identify technical debt items using sonarqube,”
in Proceedings of the International Conference on Technical Debt.
ACM, 2022, p. 71–75.

[22] Anonymous. (2022) Raw data of training for security. [Online].
Available: https://figshare.com/s/1b9359e7b4da866edfff

[23] SonarSource. (2022) Sonarqube rules by language. [Online]. Available:
https://rules.sonarsource.com/

[24] G. Johnson, “How many interviews are enough? an experiment with
data saturation and variability.” Field methods., vol. 18, no. 1, 2006.

http://archive.today/IMt3t
https://www.openreality.co.uk/wp-content/uploads/2015/08/2015-ponemon-institute-the-cost-of-web-application-attacks.pdf
https://www.openreality.co.uk/wp-content/uploads/2015/08/2015-ponemon-institute-the-cost-of-web-application-attacks.pdf
https://www.openreality.co.uk/wp-content/uploads/2015/08/2015-ponemon-institute-the-cost-of-web-application-attacks.pdf
https://www.infosecurity-magazine.com/news/global-security-skills-shortage/
https://www.infosecurity-magazine.com/news/global-security-skills-shortage/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hacking-skills-shortage.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hacking-skills-shortage.pdf
https://marketplace.eclipse.org/metrics
https://figshare.com/s/1b9359e7b4da866edfff
https://rules.sonarsource.com/

	Introduction
	Related Work
	SonarLint
	Study Design
	Goal
	Context
	Intervention and Measurements
	Design and Experimental Procedure

	Results and Discussion
	Analysis of the Results
	Threats To Validity
	Implications

	Conclusion
	References

