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Abstract—A software supply chain consists of anything needed
to develop and deliver a software project, including (third-party)
components. Software Composition Analysis (SCA) allows for
managing the security of software supply chains by identifying
such components and their (security) vulnerabilities. The main
goal of the empirical study presented in this paper is to investigate
the effects of adopting/using over time an SCA tool like OWASP
Dependency-Check (OWASP DC) in the context of the security of
the software supply chain. To this end, following a cohort design,
we analyzed the vulnerabilities affecting the components of the
open-source (OS) Java Maven projects owned by the Apache
Software Foundation (ASF) and publicly hosted on GitHub.
These projects could adopt (or not) OWASP DC. The results
indicate that the adoption of OWASP DC appears to be causing
a significant reduction in the overall number/score of vulner-
abilities, including those with a high Common Vulnerability
Scoring System (CVSS) severity level. The use of OWASP DC
also increased the vulnerabilities with a low severity level. Our
results seem to encourage practitioners to adopt SCA to improve
the security of their software supply chains.

Index Terms—Cohort Study, Empirical Study, Software Com-
position Analysis, Software Supply Chain Security, Software
Vulnerabilities

I. INTRODUCTION

The software supply chain refers to the entire process and
ecosystem involved in the development, sourcing, building,
and distribution of software. It includes all components, de-
pendencies, tools, and third-party libraries (simply components
from here onwards) that contribute to a software product,
from initial development to deployment and ongoing main-
tenance. Nowadays, software projects are typically made up
of several components, which can be affected by a range
of (security) vulnerabilities. Software supply chain attacks
involve the exploitation of vulnerabilities in components on
which a software project depends. In the past few years,
security regulations for the software supply chain have been
enforced by organizations all over the world, including the
United States Government [29] and the European Union [11],
[12]. Nevertheless, developers often do not review component
security: they usually keep components outdated, are unaware
of the vulnerabilities within them, and consider updates as an
extra effort (and, therefore, not a priority) [34].

To manage the software supply chain security, developers
can leverage Software Composition Analysis (SCA) [57]. SCA
is an application security methodology that allows tracking

and analyzing the components on which a software project
depends; it also produces information about disclosed vulner-
abilities within components and possible exploits, as well as
information about licenses and deprecated dependencies [55].
SCA is performed through automatic tools, such as those
integrated into development pipelines [40]. Although past
studies investigated the vulnerability detection capability of
these tools (e.g., [27], [64]), there are no studies that compare
the effect of using SCA tools over time with respect to not
using them at all for software supply chain security. This
is also to say that there is a lack of evidence proving that
SCA tools effectively enhance the security of software supply
chains when adopted in the development process of real open-
source and commercial projects. From a pragmatic viewpoint,
does using such a tool over time significantly reduce the
vulnerabilities in the components these projects depend on?

In this paper, as a first step in bridging this research gap,
we present the results of an empirical study analyzing the
vulnerabilities affecting the components of Open-Source (OS)
Java Maven projects owned by the Apache Software Founda-
tion (ASF) and hosted on GitHub. These projects could adopt
(or not) OWASP Dependency-Check (OWASP DC) [19] as an
SCA tool. To gather empirical evidence on whether adopting
OWASP DC may cause a reduction in the vulnerabilities af-
fecting the components of the software projects, we leveraged
a cohort design. This kind of design for empirical studies
is well-established in research fields like epidemiology but
not in Software Engineering (SE) [52]. Cohort studies allow
for investigating cause-effect relationships when controlled
experiments cannot be conducted [47], [52]. For example,
when the goal is to study how different factors or interventions
impact outcomes over time.

The results suggest that the use of OWASP DC seems to be
causing a significant reduction in the number of vulnerabilities
affecting project components. A significant effect was also ob-
served when studying the score associated with vulnerabilities.
The score of a vulnerability indicates its severity level based
on the Common Vulnerability Scoring System (CVSS). We
observed that the use of OWASP DC caused a significant
reduction in the vulnerabilities with a high severity level.
Despite that, the use of OWASP DC also caused an increase in
the vulnerabilities with a low severity level. Such a difference
could be attributed to the smaller impact of vulnerabilities with
a low severity level and, therefore, developers’ choices to deal



with vulnerabilities with a greater severity level. Our results
seem to give credit to recent security regulations [11], [12],
[29] and encourage practitioners to adopt SCA to improve the
security of their software supply chains.

Paper Structure. In Section II, we present the background
and related work. We describe the design of our cohort study in
Section III. The results are shown and discussed in Section IV
and Section V. In Section VI, we conclude the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first present the SCA tool (i.e., OWASP
DC) studied in this paper and then the research related to ours.

A. OWASP Dependency-Check

OWASP DC is an SCA tool primarily conceived to detect
publicly disclosed vulnerabilities affecting the components of
a project [19]. This tool is owned by OWASP, a nonprofit
foundation that works to improve the security of software
through education, tools, and collaboration [18]. OWASP DC
can be leveraged through a command line interface, an Ant
task, and a Maven, Gradle, or a Jenkins plugin [19].

To detect disclosed vulnerabilities, OWASP DC determines
whether there is a Common Platform Enumeration (CPE)
identifier for a given project component, and, if found, it gen-
erates a vulnerability report linking to the associated Common
Vulnerabilities and Exposures (CVE) entries [19]. OWASP DC
automatically updates itself using the National Vulnerability
Database (NVD) Data Feeds hosted by NIST [19]. This
process helps developers proactively manage risks associated
with third-party software components in their applications.

OWASP DC integrates with various build tools, such as
Maven, Gradle, and Jenkins, and can be incorporated into
CI/CD pipelines, allowing for automated vulnerability checks
throughout development. The tool generates detailed reports
that highlight potential vulnerabilities, offering a breakdown
of each issue’s severity, impacted versions, and remediation
advice. This information aids development and security teams
in prioritizing and addressing vulnerabilities, fostering a secure
software development lifecycle.

For our empirical investigation, we considered OWASP DC
as an SCA tool because (i) it is popular (more than 6.3k
stars, 1.3k forks, and 18.5k dependent software projects on
GitHub [28]) (ii) it retrieves vulnerability information from
remarkable databases (e.g., NVD [38]), and (iii) the results of
our preliminary analysis, based on the GitHub’s Dependency
Graph [5], [22] of the software repository hosting the OWASP
DC project, indicate that this SCA tool is largely used on the
Java Maven projects owned by ASF.

B. Empirical Studies on Vulnerable Components

Past studies investigated the vulnerabilities affecting the
components of software projects [1], [8], [9], [44], [63], [65].
For instance, Derr et al. [9] conducted an empirical study
involving the analysis of Android applications and a survey
with developers from Google Play. They found that almost
all vulnerable components could be updated without changing

the source code and vulnerable components are not updated
to avoid concerns that could compromise the functioning soft-
ware (e.g., incompatibilities, high integration effort) but also
for a lack of awareness regarding available updates. Decan et
al. [8] studied the impact of vulnerabilities in npm components
and found the number of new vulnerabilities and affected
components growing over time. The authors also observed that
it takes a long time to discover and fix vulnerabilities, and a
large fraction of components dependent on vulnerable ones are
not updated even when a fix is available. Zapata et al. [63]
manually inspected 60 projects adopting a vulnerable version
of the ws, angular, and marked components and found
that most of them were safe as they did not use the vulnerable
code. Zimmerman et al. [65] analyzed security concerns in
the npm ecosystem by focusing on the impact that vulnerable
components can have. The results indicate that vulnerable
components could impact large parts of the entire ecosystem
and that lack of security maintenance leads to persistent
vulnerabilities. Prana et al. [44] analyzed vulnerabilities in
OS components used by 450 software projects written in
Java, Python, and Ruby. The authors found that the most
common vulnerabilities related to “Denial of Service” and
“Information Disclosure” were of a medium severity level;
moreover, components were rarely updated or changed by
project owners, despite the availability of updates. Alfadel et
al. [1] investigated the propagation and life span of vulnera-
bilities in the Python ecosystem. Their results seem to suggest
that vulnerabilities in the packages increase over time and can
take more than three years to be found and seven months to
be fixed by the dependent.

The most remarkable difference between the above-
mentioned studies and ours is that we did not focus on the
impact of vulnerable components, but rather on the extent to
which adopting an SCA tool can cause a reduction in the
vulnerabilities affecting project components as compared with
not using these tools at all.

C. Empirical Studies on SCA tools

A few studies have investigated the vulnerability detection
capability of SCA tools [6], [27], [64]. Imtiaz et al. [27] con-
ducted a case study to compare vulnerability analysis reports
of nine industry-leading SCA tools, including OWASP DC, on
a large web app dependent on Maven and npm components.
The results indicate that SCA tools vary widely in the reporting
of disclosed vulnerabilities. As for OWASP DC, Imtiaz et
al. [27] observed that this SCA tool detected the highest
number of vulnerabilities, although a non-negligible portion
were false positives. Bottner et al. [6] investigated the vulner-
ability detection capabilities of two SCA tools, namely Eclipse
Steady and OWASP DC, in the context of Java projects. The
results indicate that OWASP DC detected significantly more
true positives than Eclipse Steady. Zhao et al. [64] proposed a
model to evaluate the performance of SCA tools in detecting
dependencies and vulnerabilities of Java Maven projects. Ac-
cording to this model, the authors assessed six SCA tools and
found that none of them supported their model well; however,



among those SCA tools, OWASP DC was, at build time, the
best at detecting components and the second best at reporting
vulnerabilities (only after a commercial SCA tool). Unlike
the studies introduced just before, we did not compare the
vulnerability detection capability of SCA tools. We compared
projects adopting and not adopting an SCA tool (i.e., OWASP
DC) with respect to software supply chain security over
time. Moreover, different from the aforementioned studies, our
comparison also provided cause-effect evidence on whether
adopting OWASP DC over time leads to fewer vulnerabilities
affecting project components. Our study provides evidence on
whether and to what extent the theoretical benefits of an SCA
tool like OWASP DC translate into practical benefits when it is
adopted in the software development process by developers.
Our contribution is built on previous research, e.g., Zhao et
al. [64] found that, from a theoretical perspective, OWASP
DC was the best free SCA tool among all the compared
SCA tools. Comprehensive evaluations need different types of
studies focusing on different aspects and our study represents
a subsequent step in quantitatively evaluating SCA tools.

In their qualitative study, Pashchenko et al. [43] investigated
developers’ decisions for selecting, managing, and updating
software components. To this end, they performed 25 semi-
structured interviews. Their results indicate that security is
prioritized when selecting components if it is enforced by
company policy. In case of a disclosed vulnerability within
a component, developers mostly rely on community support
and social channels to address that vulnerability. In fact, some
developers deemed SCA tools to generate many irrelevant or
low-priority alerts. We differ from Pashchenko et al. [43] as
our investigation aims to quantitatively observe the existence
of a cause-effect relationship between the adoption of an SCA
tool and the vulnerabilities affecting project components.

III. STUDY DESIGN

Cohort studies are well-established in other fields (e.g.,
epidemiology) to investigate cause-effect relationships by ana-
lyzing observational data [47]. Observational data are collected
by recording phenomena as they naturally occur, without
interference or manipulation from researchers. This differs
from experiments, which involve intervention and control
by the researcher. The information obtained from mining
software repositories can be considered observational data [3]
and a cohort design can be considered a viable means to
investigate cause-effect relationships [47], [52]. Cohort studies
specifically analyze observational data to examine whether
certain factors contribute to specific outcomes over time. To
achieve this, the outcomes of two or more groups of study
subjects/participants—each with different levels of the factors
being investigated—are compared [47].

In the cohort study presented in this paper, we examined
one factor, i.e., the adoption of OWASP DC, to observe
as outcomes whether this adoption caused a reduction in
the number/score of vulnerabilities (according to the CVSS
severity levels) affecting the components on which software
projects (also subjects, from here onwards) depended.

To unveil cause-effect relationships, cohort studies must
assess the association between the factor and the outcome,
ensure the temporal precedence of the factor over the outcome,
and control for confounders that may influence this relation-
ship [48], [52]. We instantiated these requirements as follows:

• Empirical association between the factor and the out-
come. This association is established through inferential
statistics (i.e., by observing statistical significance) ac-
cording to the planned data analysis (see Section III-C).

• Temporal precedence of the factor over the outcome.
We analyzed the difference in the number/score of the
vulnerabilities affecting the project components between
the start and end of the follow-up period. In cohort
studies, the follow-up period is the duration of time over
which subjects/participants are monitored to observe the
outcome [60]. We obtained temporal precedence because
OWASP DC was adopted only by one of the two groups
being compared, and the projects of this group adopted
OWASP DC after the start of the follow-up period.

• Control for other factors, i.e., the confounders, affecting
the association between the considered factor and the
outcome. We selected comparable subjects adopting and
not adopting OWASP DC by removing those differing too
much with respect to the confounders (see Section III-B).

A. Goal and Research Question

The goal of our (retrospective) cohort study is to analyze
the adoption of an SCA tool, namely OWASP DC, to evaluate
its effect on software supply chain security. The perspective is
that of (i) practitioners who need to manage the vulnerabilities
affecting the components on which their software projects
depend and (ii) researchers who have been investigating SCA
for software supply chain security. The context consists of OS
Java Maven projects owned by the ASF and publicly hosted
on GitHub.

Based on the aforementioned study goal, we formulated and
studied the following high-level Research Question (RQ):
RQ. To what extent does the adoption of OWASP DC, a well-

known and largely used SCA tool, impact software supply
chain security?

This RQ aims to study whether and to what extent adopting
OWASP DC (possibly) improves the security of the compo-
nents on which projects depend. That is, we can speculate
that such an adoption improves the security of components
and, thus, of the software supply chain if the number/score of
the vulnerabilities affecting those components decreases when
adopting an SCA (as compared to not adopting it).

B. Study Context and Planning

We considered OS Java Maven projects owned by the ASF
and publicly hosted on GitHub. We focused on projects owned
by the ASF because they are largely popular, even in industrial
settings [15], [62]. We chose Maven and Java because they
are the most popular package managers and programming
languages for the JVM (Java Virtual Machine) ecosystem [54].
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Fig. 1: Process describing the selection of projects.

In addition, according to the 2024 PYPL index, Java ranks as
the second most popular programming language [46].

In Fig. 1, we report the process followed to retrieve the
projects from GitHub, select those comparable with respect
to the confounders, and gather the data about the outcomes.
We used PyGithub [45] to retrieve ASF projects publicly
hosted on GitHub. PyGithub is a Python library that provides
a simplified interface to the GitHub REST API; therefore, it
can be used to manage GitHub resources such as repositories,
user profiles, and organizations. We used PyGithub to retrieve
all repositories owned by apache. Among those retrieved,
we included in our sample only the repositories that had:

• A pom.xml file in the root directory, to select projects
with Maven as a package manager;

• Java as the main programming language.
In the enactment of our process, we also took care of the perils
of mining GitHub by Kalliamvakou et al. [31] and therefore
we excluded those repositories that were:

• Archived or without at least one commit in the month
preceding the date of the query (May 11th, 2024), to
avoid selecting projects no longer active [31].

• Fork, to limit the risk of selecting duplicate projects [31].
We also avoided the risks of selecting personal projects or
repositories unrelated to software development (e.g., books,
tutorials, assignments) by considering ASF projects [31].

In this way, we retrieved 298 subjects (ASF projects). For
each retrieved subject, we checked if it adopted OWASP
DC. To this end, for each subject, we analyzed the con-
tent of each pom.xml file and searched for the string
dependency-check-maven among the project dependen-
cies. This string identifies the dependency toward OWASP DC
in Maven projects and a project that includes this dependency
can use OWASP DC for SCA. In case we detected the
occurrence of this string in a pom.xml file of a project, we
deemed that subject as adopting OWASP DC. If we did not

find the occurrence of that string in any pom.xml file of a
given project, we deemed that project as not adopting OWASP
DC. Among the 298 retrieved subjects, 39 adopted OWASP
DC, while 259 did not.

Afterward, we identified, for each subject, the start and
the end of their follow-up period, which was required to
gather the data about the vulnerabilities. Indeed, following
the cohort design, we had to measure such vulnerabilities
at the start and at the end of the follow-up period for each
subject. Fig. 2 shows the selection of the follow-up periods
in our cohort study. As for the projects adopting OWASP
DC, we considered for each subject the commit before the
adoption of OWASP DC as the start of the follow-up period
(this guarantees the temporal precedence of the factor over
the outcome). To decide the length of the follow-up period,
which is the same for all the projects (adopting and not
adopting OWASP DC), we computed for each subject the
time passed from the start of the adoption of OWASP DC
till the day we retrieved the repositories with PyGithub. The
follow-up period must be long enough to observe a change
in the outcome [60]. We observed that the first and second
shortest periods from the start of the adoption of OWASP
DC till the day we retrieved the repositories with PyGithub
was 40 and 264 days, respectively. 40 days might be too
short a time because upgrading components to non-vulnerable
versions can take some months [1], [44] and, therefore, we
chose 264 days as the length of the follow-up period. This
resulted in discarding only one subject.

For each project adopting OWASP DC, we mined the
commit history of all pom.xml files, searching for the first
commit introducing the dependency toward OWASP DC. We
considered as the start of the follow-up period the commit im-
mediately preceding that of the adoption of OWASP DC. This
mining process was facilitated by the use of PyDriller [58].

As for the projects not adopting OWASP DC, we had to
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Fig. 2: Selection of the follow-up period of the projects.

Confounder Confounder

Group 1 Group 2 Group 1 Group 2

Fig. 3: Distribution of a confounder in two different groups. Example of lack of balance (left) and partial overlap (right).

select subjects that were under development for a period of
time similar to those adopting OWASP DC [60]. To this
end, we defined a project selection window and selected the
projects not adopting OWASP DC having at least a commit
in it. As shown in Fig.2, the project selection window starts
with the date of the oldest commit of the follow-up periods
of the subjects adopting OWASP DC (39th repository in the
figure). The project selection window lasts till the date of the
commit corresponding to the start of the follow-up period of
the subject that lastly adopts the OWASP DC (2nd repository
in the figure). The first commit of the projects not adopting
OWASP DC within the project selection window represents
the start of their follow-up period. We discarded six subjects
not adopting OWASP DC because they had no commits within
the project selection window.

To avoid considering subjects that were inactive during the
follow-up period (both adopting and not adopting OWASP
DC), we discarded those subjects whose commit at the end of
the follow-up period was not performed within a month [31].
In the end, we obtained 209 subjects, 35 adopted OWASP
DC and 174 did not. It is worth mentioning that both projects
adopting and not adopting OWASP DC are studied in their
follow-up period.

Causal inferences are only possible when the subjects

exposed to the factor (the adoption of OWASP DC) are
comparable to those not exposed [21]. Comparability between
groups can be hindered by the lack of balance and/or partial
overlap of confounders (see Fig. 3) [21].

Lack of balance refers to a difference in the distributions
of a variable between the groups being compared (left side
of Fig. 3). In case such a variable is a confounder, lack of
balance could compromise the estimation of the effect of the
factor. Partial overlap occurs when the range of values assumed
by a variable is different between the groups being compared
(right side of Fig. 3). In case such a variable is a confounder,
partial overlap compromises the comparison of the groups in
the non-overlap regions because there are no subjects in both
groups having the same values for the confounder. To assess
the comparability between groups with respect to confounders,
cohort studies typically rely on the absolute standardized
mean difference (SMD) and the Kolmogorov–Smirnov (KS)
test [36]. SMD measures the distance between two group
means in terms of one or more variables [48]. In cohort studies,
these variables are the confounders. The KS test verifies if
two groups come from the same distribution [20]. In cohort
studies, for each group, every confounder should come from
the same distribution. To assess the comparability of groups,
we needed to identify confounders and then measure them for



TABLE I: Values of the SMD and the KS test of the confounders, after each strategy for assessing the comparability of groups.

Strategy Distance measure c # Projects OWASP DC SMD p-value of the KS test

# Not adopting # Adopting # Components Age # Components Age

None - - 206 173 33 0.708 0.807 2.17E-11 3.88E-05

Restriction - - 130 98 32 0.671 0.162 1.88E-06 0.35

Matching Mahalanobis∗ 0.1 72 56 16 0.178 0.012 3.53E-04 0.87
0.15∗ 98 80 18 0.208 0.145 1.21E-04 0.59

0.2 119 96 23 0.209 0.270 1.27E-04 0.26
0.25 123 98 25 0.222 0.268 4.13E-05 0.30

Euclidean 0.1 87 70 17 0.182 0.150 4.10E-04 0.58
0.15 111 89 22 0.176 0.258 3.60E-04 0.41
0.2 122 98 24 0.212 0.331 5.83E-05 0.17

0.25 125 98 27 0.286 0.241 2.10E-05 0.22
∗ indicates the matching configuration chosen among all the performed matching configurations.

each subject at the start of the follow-up period [21]. In the
literature, there is no systematic approach to identifying the
confounders for a given study. However, guidelines indicate
that confounders should be associated with the factor or
outcome under investigation, and such association should have
been assessed by previous research [51]. In our study, we
identified the following confounders:

• Number of components on which a project depends.
The number of components on which a project depends
is correlated to the number of vulnerabilities affecting
the components of that project [23]. For each subject
at the start of the follow-up period, we computed the
number of components using another SCA tool, namely
Trivy [56], which we later also used to gather data about
the vulnerabilities.1 We performed a git-checkout
operation to change the project version to that indicated
by the commit at the start of the follow-up period. We
failed to measure three subjects (two adopted OWASP DC
and the other did not). More in detail, for one subject, we
encountered a failure in the git-checkout operation,
while, for the other two, the analysis process carried out
by Trivy had never reached completion, even after hours
(so we had to kill these processes manually). As a result,
the total number of subjects was 206.

• Age of a project. The age of a project is correlated to the
number of vulnerabilities affecting the components of that
project [4], [23]. In addition, older subjects could keep
depending on components with disclosed vulnerabilities
because such components cannot be replaced, e.g., due
to technological constraints [41]. For each project, we
computed the age as the difference between the date of

1We used Trivy rather than OWASP DC to avoid biases influencing the
outcomes in favor of the projects adopting OWASP DC. We recall that
different SCA tools might detect different vulnerabilities for a given software
project [27], [40]. Since OWASP DC was adopted by one of the two
groups being compared in this study, using the same tool for measuring
the vulnerabilities would have favored that group adopting it with respect
to software supply chain security. We opted for Trivy because: (i) it is
popular (more than 23.1k stars, 2.3k forks, and 400 contributors on GitHub
in 10/2024 [2]), (ii) previous studies pointed out its vulnerability detection
capability [26], [32], [40], and (iii) other studies have already leveraged it
(e.g., [25], [35], [37]).

the commit at the start of the follow-up period and its
first commit.

Once confounders were identified, we proceeded toward
the assessment of the comparability in the adopting and not
adopting OWASP DC groups. The first row of Table I shows
the values of the SMD and the KS test of the confounders.
An SMD below 0.20 indicates that the confounder does not
differ much between groups [50], while a p-value higher than
0.05 for the KS test indicates that the confounder comes from
the same distribution for both groups [36]. These values for
the SMD and the KS test are those desired to deem the two
groups of subjects comparable (in boldface in Table I).

Since we did not have desirable values of the SMD and KS
test for any confounders, we used restriction. This strategy
selects subjects having the same value for one or more
confounders [21]. As far as the restriction, we discarded those
subjects that, at the start of the follow-up period, (i) had no
components on which depended (since, to have vulnerabilities
affecting components, a project needs to have at least one
component) and (ii) had just been created (to avoid subjects
inactive at the start of the follow-up period [31]). After
restriction, we had 130 subjects, 32 adopting and 98 not
adopting OWASP DC.

With restriction, we could achieve desirable values for
the SMD and KS test just for one confounder, i.e., age, as
shown in the second row of Table I. Therefore, to assess
the other confounder, i.e., number of components, we used
matching. Given the 130 subjects, matching selects similar
subjects between groups with respect to the confounders [21].
There are several configurations to perform matching [48].
It is impossible to know which matching configuration leads
to the most comparable groups unless such matching con-
figurations are performed and evaluated with the SMD and
KS test. For this reason, it is recommended to run several
matching configurations and select the one that maximizes (i)
the number of subjects not discarded and (ii) the comparability
between groups with respect to the confounders. Our matching
configurations involved running optimal full matching with
different constraints on how much a pair of subjects (one
adopting and the other not adopting OWASP DC) could



Fig. 4: Kernel density plots of the confounders.

distance with respect to both confounders [48]. These distances
were computed, for each pair of subjects, based on the values
of their confounders and a distance measure (i.e., Mahalanobis
or Euclidean). The constraint on the maximum allowable
distance was given by multiplying the standard deviation (SD)
of the distance measures with a coefficient c ranging from 0.1
to 0.25 [48]. After running several matching configurations,
we had to choose only one matching configuration out of all
those performed (see from the third row onwards of Table I).
No matching allowed us to obtain a desirable p-value for the
KS test of the number of components. We chose the matching
with Mahalanobis as a distance measure and 0.15 for c. Fig. 4
shows, for each confounder and group, the kernel density
plots before (top) and after (bottom) removing the subjects
for assessing the comparability of groups. The plots confirm
that, especially for the age, we were able to address the lack of
balance and partial overlap (see Fig. 3). We also conducted an
a priori power analysis with G*Power [13] to determine if the
98 subjects resulting from the selected matching were enough
for the inferential analysis. The results indicated that to achieve
80% power with a significance level of 0.05, the required

sample sizes for detecting small, medium, and large effects
were, respectively, 395, 55, and 25 for the statistical analysis
we planned to conduct (which is described in Section III-C).
Thus, our sample size of 98 subjects is adequate for detecting
at least a medium effect size and a possible small effect size
in the inferential analysis.

Lastly, we used Trivy on the 98 subjects (18 adopting and
80 not adopting OWASP DC) to gather data about the vulner-
abilities affecting project components, at the start and end of
the follow-up period. Trivy gathers data on all vulnerabilities
disclosed up to the present time. Therefore, we excluded those
vulnerabilities that, at the time of the start/end of the follow-up
period, had not yet been disclosed. We gathered vulnerability
data according to different severity levels. Thus, we considered
the CVSS score [39] provided by the NVD [38]. The CVSS
score ranges from 0 to 10 and such a value also indicates
a severity level. From the least to the most severe level (the
associated score range in parentheses), we found: info (0),
low (0.1-3.9), medium (4-6.9), high (7-8.9), and critical (9-10).
For each project and each severity level, we also computed the
difference between the number/score of the vulnerabilities at
the end and the start of the follow-up period.



C. Data Analysis

To answer our RQ, we first characterized with descriptive
statistics (mean and SD) the outcomes of our study, i.e., the
difference between the number/score of the vulnerabilities
at the end and the start of the follow-up period. Since the
data analysis in cohort studies must also address confounder
concerns [52], we employed statistical adjustment. Statistical
adjustment allows comparing group means by adjusting those
means for one or more confounders (which could affect the
outcome) [14]. We employed this technique by constructing
a statistical model incorporating only one confounder, i.e.,
the number of components. The reason is that, while we
managed to achieve comparability between groups for age,
even after matching, the distribution of the number of com-
ponents was not sufficiently similar between the two groups.
Several statistical models can be used to perform statistical
adjustments, each of which works according to specific data
requirements. Due to the lack of homogeneity of the regression
slopes for ANCOVA and the normality of residuals for the
Linear Mixed Model (LMM), we had to use the Generalized
Linear Model (GLM) [14]. For each of the five CVSS severity
levels, we built one GLM for the difference in the number
of vulnerabilities and another for the difference in the score
associated with that severity. We also built two other GLMs
without distinguishing per severity level. This led us to ob-
serve 12 possible outcomes. Accordingly, the formula of the
(confounder-adjusted) GLMs can be summarized as follows:
outcome ∼ adopting owasp dc+ number of components.
In reporting the results, cohort studies should also provide
and compare the confounder-adjusted estimates with the un-
adjusted estimates for triangulation purposes [59]. To this
end, we built another 12 GLMs without incorporating any
confounders: outcome ∼ adopting owasp dc. For each GLM,
we provided the model estimation and p-value of the factor
(i.e., adopting OWASP DC) and, if present, the confounder.
Note that a p-value below 0.05 would indicate the significance
of the factor/confounder in determining the outcome. To assess
the quality of each GLM, we computed the Akaike Information
Criterion (AIC), which indicates how well a model fits the
data it was generated from: the smaller the AIC, the better
the fit [14]. As an effect size measure, for each GLM, we
computed the Cohen’s f2 [24]. The practical effect of f2 is:
small, if 0.02 ≤ f2 < 0.15; medium, if 0.15 ≤ f2 < 0.35; or
large, if f2 ≥ 0.35 [7].

IV. RESULTS

As reported in Table II, on average, the projects adopting
OWASP DC had a reduction in the number (-3.389) and score
(-28.394) of all vulnerabilities. Except for vulnerabilities with
a low severity level, there was a reduction for all severity
levels (ranging from -0.056 to -2 for the number, and from
-0.117 to -16.322 for the score). Indeed, vulnerabilities with
a low severity level underwent a tiny increase in the number
(0.111) and score (0.367). As for the projects not adopting
OWASP DC, there was an increase in the overall number
(0.75) and score (5.008) of all vulnerabilities. However, such

TABLE II: Descriptive statistics on the vulnerabilities.

Difference Severity OWASP DC Mean SD
Value 95% CI

Number Info Not Adopting 0 [-,-] 0
Adopting -0.056 [-0.173,0.062] 0.236

Low Not Adopting 0 [-,-] 0
Adopting 0.111 [-0.05,0.272] 0.323

Medium Not Adopting 0.25 [-0.043,0.543] 1.317
Adopting -0.333 [-1.268,0.601] 1.879

High Not Adopting 0.513 [0.27,0.755] 1.091
Adopting -2 [-6.372,2.372] 8.792

Critical Not Adopting -0.013 [-0.037,0.012] 0.112
Adopting -1.111 [-4.898,2.676] 7.615

All Not Adopting 0.75 [0.316,1.184] 1.952
Adopting -3.389 [-11.941,5.164] 17.198

Score Info Not Adopting 0 [-,-] 0
Adopting -0.117 [-0.363,0.129] 0.495

Low Not Adopting 0 [-,-] 0
Adopting 0.367 [-0.164,0.897] 1.067

Medium Not Adopting 1.176 [-0.371,2.723] 6.951
Adopting -1.461 [-6.858,3.936] 10.854

High Not Adopting 3.954 [2.072,5.835] 8.456
Adopting -16.322 [-51.785,19.141] 71.312

Critical Not Adopting -0.123 [-0.366,0.121] 1.096
Adopting -10.861 [-47.976,26.253] 74.634

All Not Adopting 5.008 [2.244,7.771] 12.418
Adopting -28.394 [-102.623,45.834] 149.267

an increase is not consistent across the different severity
levels. The number/score of vulnerabilities with info and low
severity levels remained unchanged (means equal to zero).
As for the vulnerabilities with medium and high severity
levels, their number (0.25 and 0.513, respectively) and score
(1.176 and 3.954, respectively) increased. The number/score
of vulnerabilities with a critical severity level underwent a
tiny decrease (-0.013 and -0.123, respectively). Both with
and without distinguishing per severity levels, the SD values
indicate a higher dispersion of the mean values for projects
adopting OWASP DC than those not adopting it. This could
have been influenced by the small number of projects adopting
OWASP DC (i.e., only 18).

Table III shows the results of the inferential statistics.
Both with and without distinguishing per severity levels, the
AIC values are slightly smaller for the confounder-unadjusted
GLMs; thus, adjusting the GLMs for the confounder led to
GLMs with a slightly worse fit to data. Since the difference
in the AIC values for the adjusted and unadjusted GLMs
is tiny (at most two, for the difference in the number of
all vulnerabilities and for the difference in the score of
vulnerabilities with a high severity level), we can postulate that
this is because adjusting for confounders was not necessary.
In fact, the AIC is a measure of fit that penalizes the model
for having more factors [14]. In other words, the restriction
and matching had already led to comparable groups for both
the confounders.

As for the effects of adopting OWASP DC, we can observe
that the relationship between this factor and each outcome is
statistically significant (p-values < 0.05), except for the differ-
ence in the number/score of vulnerabilities with medium and



TABLE III: Results of the inferential statistics.

Difference Severity Adjustment AIC Adopting OWASP DC Number of components
f2

Value 95% CI p-value Value 95% CI p-value

Number Info No -170.82 -0.056 [-0.106,-0.005] 0.034 - - - 0.048
Yes -169 -0.059 [-0.113,-0.005] 0.033 4.97E-06 [-1.84E-05,2.83E-05] 0.677 0.049

Low No -108.83 0.111 [0.042,0.181] 0.002 - - - 0.102
Yes -107.01 0.106 [0.032,0.18] 0.006 6.81E-06 [-2.52E-05,3.88E-05] 0.677 0.083

Medium No 352.54 -0.583 [-1.316,0.149] 0.122 - - - 0.025
Yes 352.64 -0.756 [-1.527,0.014] 0.057 2.32E-04 [-1.02E-04,5.66E-04] 0.176 0.039

High No 545.28 -2.513 [-4.471,-0.554] 0.014 - - - 0.066
Yes 547.27 -2.541 [-4.621,-0.461] 0.019 3.83E-05 [-8.63E-04,9.40E-04] 0.934 0.06

Critical No 510.44 -1.099 [-2.738,0.541] 0.192 - - - 0.018
Yes 511.85 -0.881 [-2.618,0.855] 0.322 -2.91E-04 [-0.001,4.61E-04] 0.45 0.01

All No 675.72 -4.139 [-7.948,-0.329] 0.036 - - - 0.047
Yes 677.72 -4.132 [-8.179,-0.085] 0.048 -9.01E-06 [-0.002,0.002] 0.992 0.042

Score Info No -25.40 -0.117 [-0.223,-0.01] 0.034 - - - 0.048
Yes -23.58 -0.124 [-0.237,-0.011] 0.033 1.04E-05 [-3.85E-05,5.94E-05] 0.677 0.049

Low No 125.18 0.367 [0.137,0.596] 0.002 - - - 0.102
Yes 127.00 0.35 [0.106,0.594] 0.006 2.25E-05 [-8.31E-05,1.28E-04] 0.677 0.083

Medium No 684.36 -2.637 [-6.619,1.344] 0.197 - - - 0.018
Yes 684.62 -3.539 [-7.731,0.653] 0.101 0.001 [-6.08E-04,0.003] 0.195 0.029

High No 954.99 -20.276 [-36.113,-4.439] 0.014 - - - 0.066
Yes 956.99 -20.350 [-37.173,-3.526] 0.020 9.90E-05 [-0.007,0.007] 0.979 0.059

Critical No 957.81 -10.739 [-26.805,5.328] 0.193 - - - 0.018
Yes 959.22 -8.613 [-25.629,8.403] 0.324 -0.003 [-0.01,0.005] 0.451 0.01

All No 1096.67 -33.402 [-66.031,-0.773] 0.048 - - - 0.042
Yes 1098.63 -32.277 [-66.931,2.378] 0.071 -0.002 [-0.017,0.014] 0.844 0.035

critical severity levels. There is also no statistical significance
for the confounder-adjusted GLM in the difference of the
score of all vulnerabilities. Not having identified a statistically
significant relationship between adopting OWASP DC and an
outcome does not necessarily mean that such a relationship
does not exist [30], [61]. As for the difference in the score
of all vulnerabilities for the confounder-adjusted GLM, we
can postulate that the loss of significance, compared with
the confounder-unadjusted GLM, is due to having adjusted
for the confounder, even though it was not necessary. The
presence of a statistically significant relationship between
adopting OWASP DC and an outcome indicates that such
an adoption causes a change in that outcome. To understand
whether that change represents an increase or reduction in
the number/score of vulnerabilities, we can consider the value
estimated for adopting OWASP DC. Negative values indicate
that adopting OWASP DC leads to a reduction in the num-
ber/score of vulnerabilities, while positive values indicate an
increase. We can observe that only vulnerabilities with a low
severity level are associated with an increase in number/score
when adopting OWASP DC. For all the other severity levels,
adopting OWASP DC is associated with a reduction in the
number/score of vulnerabilities. This reduction also happens
for the vulnerabilities with medium and critical severity levels,
for which we did not observe statistical significance when
adopting OWASP DC.

The Cohen’s f2 effect sizes are small (0.02 ≤ f2 <
0.15) for all the outcomes, except for the difference in the
number/score of critical vulnerabilities where the Cohen’s f2

is negligible (0.018 and 0.01 for the confounder-unadjusted
and -adjusted GLMs, respectively). The Cohen’s f2 is also

negligible for the difference in the score of vulnerabilities with
a medium severity level of the confounder-unadjusted GLM
(0.018) but not for the confounder-adjusted GLM (0.029).
These confounder-unadjusted GLMs do not reach a small
effect size for only 0.002. The Cohen’s f2 effect sizes are sim-
ilar between the confounder-unadjusted and -adjusted GLMs
(the maximum difference is 0.019 for the number/score of
vulnerabilities with a low severity level). We can also observe
that the Cohen’s f2 effect sizes are slightly higher for the
confounder-unadjusted GLMs, except for the number/score
of both vulnerabilities with info and medium severity lev-
els. Then, we can acknowledge a consistency between the
confounder-unadjusted and -adjusted GLMs.

Based on our results, we can answer our RQ as follows:

The use of OWASP DC causes a significant reduction in
the overall number/score of vulnerabilities affecting project
components. In detail, a significant reduction was observed
for the vulnerabilities with info and high severity levels. As
for vulnerabilities with medium and critical severity levels,
we did not observe any cause-effect relationship associated
with the use of OWASP DC. We also observed OWASP
DC causing a significant increase in the number/score of
vulnerabilities with a low severity level. The practical effect
of using OWASP DC was generally small.

V. DISCUSSION

In this section, we discuss the main findings and the threats
that might affect the validity of our study.



A. Overall Discussion and Implications

In frames, we highlight the main findings distilled from the
results of our study. Every framed finding is followed by a
compelling discussion that deepens understanding.

Finding #1: Using OWASP DC causes a small reduction
in the overall number/score of vulnerabilities affecting
components on which ASF projects depend. This reduction
has also been observed for vulnerabilities with info and
high severity levels.

Our results suggest that using OWASP DC can lead developers
to reduce the overall number/score of vulnerabilities affecting
project components, including those with info and high sever-
ity levels according to the CVSS. Therefore, using an SCA
tool like OWASP DC can improve the security of the software
supply chain, as pointed out by recent regulations [11], [29].
We advise practitioners to use an SCA tool to manage the
vulnerabilities affecting their project components. This would
also allow them to overcome difficulties like the lack of aware-
ness regarding available updates of vulnerable components [8],
[9], [44] and facilitate security maintenance activities [65].

We recall that Pashchenko et al. [43] pointed out that
security is prioritized for selecting components if enforced
by organization policy. Therefore, we can postulate that the
observed reduction in the vulnerabilities affecting project
components may be due to the context of our cohort study,
namely ASF projects. These projects share a common set of
minimum requirements related to security and then developers
should always work with the ASF Security Team when dealing
with vulnerabilities [16], [17]. The context of our study could
also justify the presence of a small practical effect associated
with using OWASP DC. We can postulate that using OWASP
DC in projects where software security is not enforced could
lead to observing a larger practical effect related to its use.
In other words, the use of an SCA tool like OWASP DC
in contexts different from that of our study (e.g., a different
software ecosystem) could lead to greater improvements in
the security of the software supply chain. Researchers could
be interested in replicating our study to observe whether our
results hold in different contexts.

Finding #2: We observed no significant reduction in the
number/score of vulnerabilities with medium and critical
severity levels when using OWASP DC in ASF projects.
The practical effect was small for vulnerabilities with a
medium severity level and almost small for vulnerabilities
with a critical severity level.

With a proper experimental design (like in the cohort design),
statistical significance makes it possible to conclude that a
cause-effect relationship is present [52]. The fact that statistical
significance is not observed does not imply that a cause-effect
relationship does not exist [30], [61]. Therefore, even if such
a kind of relationship is not shown, studying the practical

effect of a factor on the outcome remains important, and it
can be estimated by a proper effect size measure [30], [61].
In our study, we observed that the practical effect in the
reduction of the number/score of vulnerabilities was small
for vulnerabilities with a medium severity level and almost
small for those with a critical severity level. The results
on the effect size could motivate researchers to investigate
the cause-effect relationships related to vulnerabilities with
medium and critical severity levels [10]. Our finding also
allows practitioners to make more informed decisions on
adopting SCA tools to address vulnerabilities with medium
and critical severity levels.

Finding #3: Using OWASP DC causes a small increase
in the number/score of vulnerabilities with a low severity
level affecting ASF project components.

Using OWASP DC did not always lead developers to reduce
the number/score of vulnerabilities affecting project compo-
nents in ASF projects. Vulnerabilities with a low severity
underwent an increase that, although practically small, can
be attributed to the adoption of OWASP DC. In other words,
adopting OWASP DC caused an increase in the number/score
of vulnerabilities with a low severity level. Since we observed
a reduction in the vulnerabilities for all the other severity
levels, we can speculate that developers in ASF projects
consciously left unresolved vulnerabilities with a low severity
level (as alerted by OWASP DC) because they believed them
of scant relevance with respect to software supply chain
security. For example, the vulnerable code of the components
affected by such vulnerabilities might not be executed at run-
time [63], or developers might have prioritized the resolution
of vulnerabilities with a greater severity level [43].

Researchers could be interested in further investigating
vulnerabilities affecting project components, especially with
respect to their severity levels. This could involve qualitative
investigations with ASF developers about the reasons for
deciding whether or not to fix certain vulnerabilities.

B. Threats To Validity

To deal with the threats that might affect the validity of
our study, we followed Shadish et al.’s guidelines [53]. We
ranked the threats from the most to the least sensible for our
research goal—i.e., from internal to external validity threats.
The rationale behind this decision relies on the fact that we
were more interested in studying that cause-effect relationships
were correctly identified [53]. This is typical of cohort studies
(as well as experiments) in that they seek to unveil cause-effect
relationships between factors and outcomes.

Internal Validity. They are concerned with factors internal to
a study that might affect its results [53]. In particular, these
threats relate to causality. We acknowledge a threat of con-
founding bias, which affects the association between the factor
and the outcome [49]. We controlled confounders by following



a cohort design [52]. It is worth mentioning that there may
be confounders that we have not been able to identify and
measure. An example of an unmeasured confounder might be
the use of tools other than OWASP DC to deal with security—
e.g., a developer of a project not adopting OWASP DC
might have used static- and/or dynamic- application security
testing tools on their computer to detect vulnerabilities before
committing the code on GitHub. To strengthen the internal
validity of our study (also for unmeasured confounder), we
considered OS projects that were similar to each other in
the way they were managed, namely ASF projects. These
projects share a common set of minimum requirements related
to governance, technologies, community, security, etc. [16]. In
this way, the likelihood that a developer used tools other than
OWASP DC is the same for the projects of both groups being
compared, and therefore this unmeasured confounder should
not represent a threat to the validity of our results.

Construct Validity. They are concerned with the relationship
between theory and observation [53]. In a cohort study, a
threat to such a kind of validity can be the loss to follow-
up [33], i.e., discarding subjects from the study due to concerns
that occurred during their follow-up period. In our case, we
discarded the inactive projects at the end of the follow-
up period. We also verified that all projects using OWASP
DC consistently adhered to this SCA tool throughout their
follow-up period by analyzing all commits made. Another
threat to construct validity could be the tool used to make
the measurements, i.e., Trivy. We recognized the possibility
that a different tool might detect different components and
vulnerabilities. However, the use of Trivy or another tool
would equally affect the confounders and outcomes in favor
of the projects using either OWASP DC or not. This entails
that the accuracy of Trivy affected the measurements of the
projects adopting OWASP DC in the same way as the projects
not adopting OWASP DC. Therefore, the use of Trivy as a
measurement instrument should not represent a threat to the
validity of our results.

Conclusion Validity. They are concerned with the statistical
conclusions, including sample composition and size [53]. To
mitigate the threat of random heterogeneity of subjects, we
compared two groups of projects from ASF. By considering
projects from the ASF, we also mitigated a threat of reliability
of treatment implementation according to which the different
projects adopting OWASP DC might have used this tool
differently from each other. Although we conducted an a priori
power analysis, there could still be the risk that the number of
projects could have affected the validity of the conclusion.
Finally, we mitigated a threat of violated assumptions of
statistical tests by using proper tests (e.g., we employed the
GLM since the assumptions for the ANCOVA and LMM did
not hold). It is worth mentioning that multicollinearity did not
pose a threat because the statistical models used to analyze
the data included at most one confounder.

External Validity. They are concerned with the generalizabil-
ity of results [53]. There could be a threat of interaction of
selection and treatment when generalizing our findings to a
population different from that being studied. The ecosystem
of which the projects are part (i.e., ASF) might represent a
threat of interaction of setting and treatment. We acknowledge
that our results might not be generalized to other ecosystems.
For example, the practical effect of the observed cause-effect
relationships might be greater in other ecosystems where
requirements related to security are less stringent than those
in ASF. However, ASF projects are largely popular, even in
industrial settings [15], [62]. We also acknowledge that our
results might not be generalized to an SCA tool different from
OWASP DC. Our empirical evidence justifies future work on
other ecosystems (e.g., npm) and different kinds of SCA tools.

VI. CONCLUSION

We presented the results of a cohort study investigating
whether using OWASP DC (with respect to not using it) causes
a reduction in the vulnerabilities affecting the project com-
ponents. We found that, among the OS Java Maven projects
owned by ASF, using OWASP DC as an SCA tool caused a re-
duction in the overall number/score of vulnerabilities affecting
their components. Such a reduction has a small practical effect.
The obtained results have several practical implications and
complement the current literature. For example, even though
past research outlined possible concerns associated with the
correctness of the detected vulnerabilities, we provided cause-
effect evidence that SCA tools could improve the security
of the software supply chain and this was possible thanks
to the use of a cohort design. Therefore, our research also
has the merit of showing that such a kind of design can
be effectively used in the SE field to retrospectively unveil
cause-effect relationships on software repositories. In future
work, we plan to corroborate our quantitative results with a
qualitative investigation of the kinds of vulnerabilities that
have and have not been resolved in the software projects
considered in our cohort study.
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