
Managing Vulnerabilities in Software Projects:
the Case of NTT Data

Sabato Nocera
Department of Computer Science

University of Salerno
Fisciano, Italy

snocera@unisa.it

Simone Romano
Department of Computer Science

University of Salerno
Fisciano, Italy

siromano@unisa.it

Rita Francese
Department of Computer Science

University of Salerno
Fisciano, Italy

francese@unisa.it

Riccardo Burlon
NTT Data

Salerno, Italy
riccardo.burlon@nttdata.com

Giuseppe Scanniello
Department of Computer Science

University of Salerno
Fisciano, Italy

gscanniello@unisa.it

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Background: Software vulnerabilities are flaws in
application source code that can be exploited to cause harm,
hence companies must devise strategies to manage them.
Aim: We want to understand how software vulnerabilities are
managed in a big IT (Information Technology) service and
consulting company like NTT Data.
Method: We conducted a focus group involving six software
professionals working at NTT Data and analyzed the gathered
data through a thematic analysis approach.
Results: We found that application security standards are de-
fined based on the needs of the clients (i.e., companies that
commissioned NTT Data the software to be developed) and
the projects’ nature (i.e., the development of greenfield projects
vs. maintenance of existing ones). Also, to detect software
vulnerabilities, SAST (Static Application Security Testing) tools
are mainly used; among these, SonarLint and SonarQube appear
to be the de-facto standards for NTT Data. Finally, not all
software vulnerabilities are fixed; for example, the presence of
some software vulnerabilities is tolerated by the clients, who take
on the responsibility of not removing these vulnerabilities.
Conclusions: It seems that developers and NTT Data clients
are not averse to securing their code. NTT Data follows the
application security standards established with their clients. To
detect software vulnerabilities, SonarLint and SonarQube appear
to be the de-facto standards, so explaining to some extent the
increasing attention on these tools by the software engineering
research community.

Index Terms—Software Vulnerability, Focus Group, Qualita-
tive Study

I. INTRODUCTION

Software vulnerabilities (also known as security issues or
security concerns) are flaws in the computational logic that
would negatively affect confidentiality, integrity, and/or avail-
ability of a software system [1]. An attacker might exploit the
vulnerabilities of a software system to damage its stakeholders.
A few examples of stakeholders are the developers and the
end-users of the software system, but also the possible client
who commissioned NTT Data the software to be developed.
The economic impact of software vulnerabilities can be dra-
matic, as in the case of Heartbleed, a software vulnerability

in the popular OpenSSL cryptography library, which has cost
at least USD 500 million to companies [2].

The common belief is that the responsibility for the intro-
duction and presence of software vulnerabilities is ultimately
of the developers. However, Assal and Chiasson [3] observed
in their survey—conducted to explore the existing relationship
between developers and secure software development—that
developers are not averse to using security practices, but they
simply follow company policies. On the other hand, security
is often ignored because it may be considered a secondary
requirement [4]. In this respect, it seems important to improve
our body of knowledge on the role of both developers and
companies in the management (i.e., development and mainte-
nance) of secure software.

As a first step in such direction, we asked one of the
most important companies in our contact network to take
part in a qualitative study. Unlike quantitative investigations,
qualitative ones allow gaining a deeper understanding of the
reasons and motivations behind a given phenomenon [5]. In
particular, we conducted a focus group involving six software
professionals working at NTT Data, a multinational company
operating in the IT (Information Technology) service and
consulting field with a revenue of over USD 20,000 billion
in 2021. The company has a global presence and operates in
more than 50 countries, with a workforce of over 150,000
employees worldwide, serving clients in various industries
such as finance, healthcare, and the public sector.

We used a thematic analysis approach to analyze the tran-
script of the audio recording of the focus group session, as
well as the notes taken by the researchers during that session.

The most important results of our qualitative investigation
can be summarized as follows:

(i) Application security standards are defined based on
clients’ needs and projects’ nature;

(ii) To detect software vulnerabilities, SAST (Static Applica-
tion Security Testing) tools are mainly used;



(ii) SonarLint and SonarQube appear to be the de-facto
standards for NTT Data;

(iv) Not all software vulnerabilities are fixed.
The rest of the paper is organized as follows. In Section II,

we summarize research related to ours. We present the plan-
ning and execution of our focus group in Section III. The
study results are presented in Section IV. We then discuss
the obtained results and possible limitations of our study in
Section V. Final remarks conclude the paper in Section VI.

II. RELATED WORK

Few investigations have been conducted to study how soft-
ware vulnerabilities are managed by companies [3], [6]–[8].

Weir et al. [6] analyzed a dataset of software security
development activities led by developers. The authors point
out that the adoption of security practices increased slowly
until 2015, and then accelerated. This coincided with a greater
focus on supporting cloud-based deployment and prioritizing
component security.

Braz and Bacchelli [7] interviewed ten professional de-
velopers and surveyed 182 practitioners to investigate the
assessment of software security in code reviews. Their results
show that, despite developers recognizing their responsibility
to uphold security standards during code reviews, security does
not hold a prominent position among their priorities. On the
other hand, companies offer limited assistance and incentives
to developers (e.g., lack of security training), yet they expect
developers to still ensure security during reviews.

Assal and Chiasson [3] surveyed 123 software develop-
ers employed in North America, in order to investigate the
existing relationship between developers and secure software
development. The focus of their study was on how developers
influence and are influenced by these security practices. The
authors discovered that the primary challenges in effectively
managing software vulnerabilities often arise due to insuffi-
cient organizational or process support throughout the various
stages of development. On the other hand, developers acknowl-
edge the importance of software security and are not reluctant
to adopt secure programming practices.

Palombo et al. [8] conducted an ethnographic study of
secure software development processes in a software company.
They collected data for a year and a half by using the anthropo-
logical research method of participant observation. They found
that software vulnerabilities arise from deliberate actions or
oversights, which can be attributed to the difficulties associated
with managing the various stakeholders’ responsibilities in an
economic ecosystem. Consequently, it is inaccurate to attribute
the introduction of these software vulnerabilities solely to the
insufficient knowledge or skills of developers.

Our study differs from the aforementioned ones because we
conducted a focus group aimed to understand how vulnerabil-
ities are managed in a big IT service and consulting company
like NTT Data. One of the peculiarities of focus groups is their
capacity to foster group interaction, which often results in the
exploration of themes originally not planned, that are regarded
as significant by the participants of the focus group [9].

III. THE FOCUS GROUP

The use of empirical methods in software engineering is
increasing, indeed a wide range of them has been defined
to address different research problems [10]. Among these
different kinds of empirical methods, the focus group is
quick and cost-effective to obtain qualitative insights and
feedback [11]. Rather than providing quantifiable responses
to a specific research question, a focus group study provides
a flow of input and interaction among participants related
to a given topic of interest [12]. More in detail, a focus
group is a planned discussion that researchers design to obtain
personal perceptions of individuals (also participants from
here onward), arranged in a group, on a defined area of
interest [13]. Focus groups have the benefit of producing
upfront and sometimes insightful information by fostering
group interaction—e.g., this can result in the exploration of
topics not included among those initially defined, but that is
deemed important by the participants [9]. The typical size of
a focus group is between three and 12 participants [10].

We planned and conducted our focus group by following
the guidelines by Kontio et al. [11], suggested for research in
the software engineering field.

A. Defining the research problem

The aim of our focus group was to gain insights into
how companies—specifically, NTT Data—manage software
vulnerabilities in the code of the software systems they develop
and/or maintain, delving into their policies and instruments for
managing software vulnerabilities, as well as the process for
resolving them.

B. Planning and execution of the focus group

We involved six software professionals working in the Ital-
ian division of NTT Data, who had expressed their willingness
to take part in the study.

The services offered by NTT Data are divided into several
key areas, including application development and manage-
ment, IT consulting, digital transformation, cloud services,
infrastructure services, and cybersecurity. The Italian division
of NTT Data is known for its expertise in delivering large-
scale software projects, such as the implementation of digital
payment systems for major Italian banks, the development
of IoT (Internet of Things) solutions for the manufacturing
sector, and the realization of digital platforms for the public
administration.

The participants in our study had: different job positions,
direct work experience with software security practices, and
long careers as software professionals (on average, more than
16 years, see Table I). Moreover, the participants belonged to
different teams and worked on different software projects.

The focus group was held at a local headquarters of NTT
Data in Salerno, Italy, during a one-hour session conducted
in Italian1 and audio-recorded. One of the authors of this
paper (i.e., the second) played the role of the facilitator of

1All the participants were Italian.



TABLE I: Demographic information on the six participants.

Position in the company Job tenure Experience as professional
(years) (years)

1) Project Manager 3 17

2) Project Manager 4 17

3) Technical Project Manager 3 14

4) Team Lead & Senior Test Automation Engineer 5 14

5) Test Manager 3 15

6) Solution Architect 5 20

Average 3.83 16.17

the focus group—i.e., he was responsible for ensuring that
all relevant topics were addressed, limiting deviations in the
discussion, and encouraging the participants to express their
opinions, all while avoiding conditioning the participants. Two
other researchers (i.e., the first and the third) were instead
responsible for collecting notes during the focus group session.

The focus group session began with an introduction in
which the aim and ground rules of the session were explained
to the participants (the fifth author was responsible for such
introduction). In particular, the facilitator emphasized that
the participants’ contributions should represent the company’s
situation from their perspective and that we would ensure the
confidentiality and anonymity of all data collected, including
the identity of the participants. The facilitator also made it
clear that the research would have been published with the
company’s name only if the company had wanted to.

According to a pre-defined script, the discussion followed a
semi-structured approach in which the facilitator guided it by
addressing the topics of interest one after another; in this way,
it was possible to stimulate a prolific dialogue and engage all
the participants while remaining consistent with the objective
of the study.

The topics of interest initially identified, and thus covered by
the interview script, are reported in Table II. The participants
were prompted with open-ended questions about each of the
aforementioned topics, therefore all of them had the oppor-
tunity to contribute to the discussion and we could further
investigate key insights arising from their contributions. The
greater part of the questions was initially defined in the script,
albeit slightly different from how they were asked in the focus
group; other questions emerged from the discussion with the
participants. A non-exhaustive list of questions, translated into
English, is provided below.

1) What is the company’s policy regarding the management
of software vulnerabilities?

2) How do you assess software security and when do you
do so during the software development life cycle?

3) Which are the instruments you usually use for managing
software vulnerabilities?

4) Who is usually responsible for resolving software vulner-
abilities?

5) Are there software vulnerabilities you do not fix and what
are the reasons for leaving them unfixed?

C. Analysis
We used a thematic analysis approach, namely template

analysis [14], to analyze the transcript of the audio recording
and the notes taken by the researchers during the focus group.

Thematic analysis is a qualitative method used to identify
patterns, themes, and interpretations in data [15]. The main dif-
ference between template analysis and a conventional thematic
analysis approach concerns the usage of a template—i.e., a
predefined and hierarchical set of themes. In template analyses,
researchers develop templates based on their experience and
knowledge of the phenomenon under investigation. However,
templates are not fixed as their themes and hierarchical struc-
ture can evolve as the analysis progresses.

We used template analysis because of its flexibility and
swiftness [14]. In our case, the template was created based
on our teachers’ and researchers’ experience with software
vulnerabilities and on the results of our study of the state of
the art. To deal with researcher bias [16], the template analysis
was executed by two authors of this paper (the first and second
authors). In particular, this was to limit possible subjective
evaluation during the template analysis.

IV. RESULTS

In Table II, we show the initial template, whose themes
were covered during the focus group. The themes emerging
from the gathered data were consolidated in the final template
reported in Table III.

Below, we present the themes of the final template, each
including two/three sub-themes (see Table III).

A. Theme 1) Policy
This theme includes two sub-themes related to clients’ needs

and projects’ nature.

a) Client’s Needs. The contract with the client establishes
the policy for managing software vulnerabilities, including
the application security standards to be guaranteed and the
instruments used for software vulnerability management—e.g.,
SAST or Dynamic Application Security Testing (DAST) tools.

The application security standards are based on the severity
classification of software vulnerabilities detected by SAST
and/or DAST tools. For example, the company’s base appli-
cation security standards include no blocker software vulner-
ability (detected by using a SAST tool, namely SonarQube)



TABLE II: Initial template.

Theme Focus

1) Policy On the policy for managing software vulnerabilities

2) Instrumentation On the instruments used for managing software vulnerabilities

3) Resolution On the process followed to resolve software vulnerabilities

TABLE III: Final template.

Theme Sub-theme

1) Policy a) Client’s needs

b) Project nature

2) Instrumentation c) SAST/DAST Tools

d) Unit testing

e) Third-party software

3) Resolution f) Resolution in codebase

g) Resolution in third-party software

h) Resolution without fixing

and at most 30 critical software vulnerabilities in the delivered
software 2.

The policy for managing software vulnerabilities, and thus
the application security standards, depends on the client’s
needs—e.g., those operating in the public administration or
banking sector demand higher application security standards.

b) Project Nature. The company business is focused on the
(i) development of greenfield projects and (ii) maintenance of
existing projects.

The policy for managing software vulnerabilities depends on
the kind of project. In particular, when developing a greenfield
project, the company is responsible for the management of
any software vulnerability. On the other hand, when taking
charge of the maintenance of an existing project, it is necessary
to assess how secure the inherited software is since software
vulnerabilities in the inherited software are not usually under
the responsibility of the company. If software vulnerabilities
emerge from such assessment, the company informs the client
so that it can decide which software vulnerabilities need to be
managed by the company.

B. Theme 2) Instrumentation

We defined three sub-themes, within this main theme, which
are related SAST/DAST tools, unit testing, and third-party
software.

c) SAST/DAST Tools. The company mainly uses SAST
tools for detecting software vulnerabilities within both IDEs

2SonarQube assigns a severity level to each kind of security issue based
on impact (i.e., to what extent a kind of security issue causes harm to the
stakeholders of the software system if exploited by an attacker) and likelihood
(i.e., what is the probability that an attacker exploits that kind of security
concerns). Blocker software vulnerabilities are characterized by a high impact
and a high likelihood, while critical software vulnerabilities have a high impact
but a low likelihood.

(Integrated Development Environments) and CI (Continuous
Integration) pipelines.

In particular, SonarLint is plugged into IDEs to detect soft-
ware vulnerabilities when developers code, while SonarQube
is used for scheduled (e.g., weekly) or event-triggered (e.g.,
merge request) security assessments. Both tools are open-
source, developed by SonarSource, and share the same analy-
sis engine (i.e., they detect the same software vulnerabilities).
The company opted for these tools because they can be
considered de-facto standards. Also, they are cost-effective,
easy to use, and faster than DAST tools.

Both SonarLint and SonarQube assess software security
based on two kinds of security issues: hotspots (i.e., security-
sensitive code portions requiring reviews to determine whether,
or not, to make such portions secure) and vulnerabilities (i.e.,
security issues requiring fixings). The company considers these
two kinds of security issues equally important—i.e., what
matters for the company is the severity of security issues, not
their kind.

The participants asserted that SonarQube is not only used
in greenfield projects but also largely used in the assessment
of legacy software (i.e., in maintenance projects).

Some clients require the company to use their CI pipelines
or different SAST/DAST tools (e.g., Fortify, Security Re-
viewer, CheckMate, or OWASP ZAP). When this happens, the
company comply such a request.

d) Unit Testing. The presence of software vulnerabilities is
not usually detected by performing unit testing, exceptions
are represented by very specific and easy-to-test software
vulnerabilities (e.g., SQL Injection). However, the company
values unit testing since its developers are used to running
unit tests after resolving vulnerabilities in order to detect
regressions. The company considers critical unit test coverage
lower than 80%.

e) Third-party Software. If the client does not impose any
constraint, NTT Data uses open-source third-party software
(e.g., frameworks or libraries) supported by an active commu-
nity and widely used by other developers. This is because, in
case of software vulnerabilities in such third-party software,
the company’s developers can find support from other devel-
opers. Also, the developers of such third-party software are
usually fast in publishing software releases containing patches
for newly-discovered software vulnerabilities.

C. Theme 3: Resolution

This theme includes three sub-theme related to the resolu-
tion of software vulnerabilities in the codebase and in third-



party software, and the resolution of software vulnerabilities
without fixing them.

f) Resolution in the Codebase. Software vulnerabilities
are usually resolved by the developer who originally wrote
the source code containing such software vulnerabilities—
exceptions are represented by junior developers, who can ask
the help of senior ones to resolve them.

g) Resolution in Third-party Software. If software vul-
nerabilities are disclosed in third-party software, the resolution
process usually consists of updating the third-party software
to the releases containing the corresponding patches. The
patches are published by the vendors (including open-source
organizations) and are often an immediate way to fix these
vulnerabilities because a one-click dependency update is most
of the time all that is needed. Moreover, the company values
unit testing (as mentioned before) so that regressions are likely
to be detected after a dependency update.

h) Resolution without Fixing. Some software vulnerabil-
ities are resolved without fixing them. In particular, some
are false positives, others have a low severity level and their
resolution is not part of the contract, while still others cannot
be fixed due to cost and/or technological constraints (e.g., the
client needs to use an outdated communication protocol that
should be updated to fix a given vulnerability). In any case,
the client is informed about these security concerns and may
ask NTT Data not to fix them.

V. DISCUSSION

In this section, we first discuss the obtained findings and
then the threats that might affect the validity of the obtained
results.

A. Overall Discussion, Implications, and Future Research
Directions

Below, we use frames to show the main findings of our
study. Then, whenever possible, we outline research opportu-
nities for academics and implications for practitioners.

Finding #1: The policy for managing software vulner-
abilities, including the application security standards to
be guaranteed and the instruments used for software
vulnerability management, are established in the contract
with the client. Such a policy depends on clients’ needs,
but also on projects’ nature.

The establishment of the application security standards heavily
relies on the client’s demands, so it is necessary that clients
are aware of the security level needed by their software. As
software is increasingly pervasive, demanded, and adopted by
different categories of people with different backgrounds, it
should not be taken for granted that they have such awareness.
Future research should seek to understand the degree to which
clients are aware of the security level needed and achievable
by the software they demand. On the other hand, practitioners

should determine if their clients comprehend the security risks
of the demanded software.

The above-mentioned finding confirms those from past
studies [3], [7], [8]: developers are not averse to using security
practices, they simply follow company policies established
with clients.

Finally, since much of the software in circulation is legacy
nowadays, it would be interesting for both researchers and
practitioners to understand the degree of security and the ease
with which legacy software can be secured.

Finding #2: Software vulnerabilities are mostly detected
by means of SAST tools—SonarLint and SonarQube
appear to be the de-facto standard in NTT Data. DAST
tools are less used than SAST tools due to their higher
execution costs and inferior ease to use.

SAST and DAST tools may detect different types of software
vulnerabilities. Therefore, if software companies do not use
both SAST and DAST tools, some software vulnerabilities
may be overlooked. Clients need to be aware of the primary
role of DAST tools, and then take a more informed decision
about asking software companies to use DAST tools in con-
junction with SAST tools.

To ease the adoption of DAST tools, researchers should
devise strategies to reduce the execution costs of DAST tools.

Finally, the above-mentioned finding explains the increasing
researchers’ attention on SonarLint and SonarQube by the
software engineering research community (e.g., [17]–[21]).

Finding #3: Software vulnerabilities are usually resolved
by the developer who originally wrote the source code
containing such software vulnerabilities, if they lie in the
codebase; or by updating software dependencies, if such
software vulnerabilities lie in third-party software. Also,
some software vulnerabilities are consciously left without
a fix because their resolution is not part of the contract
or due to cost and/or technological constraints.

The use of vulnerable software components threatens soft-
ware security. Practitioners should assess the security of the
individual components that make up their software. To that
end, they should adopt Software Composition Analysis (SCA)
tools to check their software supply chain security, as well as
provide their clients with Software Bill of Materials (SBOMs)
listing all the components of their software systems along
with known software vulnerabilities [22]. Researchers could
be interested in investigating the adoption of these practices
in both the industrial and open-source contexts.

Finally, the decision of leaving some software vulnerabili-
ties unfixed is driven by the contract or other constraints not
attributable to the developers, but to the clients. Once again, we
confirm findings from past work (e.g., [3]): developers are not
averse to using security practices, they simply follow company
policies (agreed with clients).



B. Threats to Validity

Focus groups can be prone to threats associated with quali-
tative data, like researcher bias [23]. Other possible threats
to the validity are related to focus group weakness [11]:
group dynamics, social acceptability, hidden agendas, and
limited comprehension. Further threats to validity concern
secrecy, false information, the number of participants, and
generalization. Below, we discuss these threats.

Researcher bias should not be present in our study since
we are not part of NTT Data, thus we are neither responsible
for managing software vulnerabilities in NTT Data nor we
are interested in obtaining a specific outcome from the study.
Moreover, two researchers performed the template analysis to
avoid their expectancies influencing the results.

To mitigate a threat due to group dynamics, we used a semi-
structured discussion approach; also, the facilitator balanced
discussions and activated less active participants.

Social acceptability weakness was mitigated by laying out
appropriate ground rules in the beginning. The facilitator took
his role in driving the discussion to avoid as many as possible
social acceptability issues.

Hidden agendas did not affect our study results because
it was communicated to participants that the gathered data
would be threaded confidentially (including the identity of
the participants) and the results would be presented in an
anonymous form. Moreover, having initially clarified the ex-
ploratory nature of the study and the absence of particular
expectations from researchers, the participants were able to
express themselves and intervene without pressure and with
sincerity. We also emphasized that study results could be
significant for both academy and industry.

As for limited comprehension, we approached the topics of
interest in a top-down manner, starting with the general and
moving to the specific, so that all participants had opportunities
to talk.

Regarding secrecy, it does not affect the validity of results
because relevant information concerned with proprietary or
business reasons was not discussed in our focus group session.

The risk that the participants might profess false information
about the company was mitigated by deciding that the paper
would be published with the company’s name only after they
read it and agreed with what transpired.

As for the number of participants in the focus group, we
are within the typical range—according to Kontio et al. [11],
focus groups are typically conducted by involving three to
twelve participants.

Finally, we recognize that our results may not hold outside
the case of NTT Data (e.g., in the case of other companies or
in the open-source context).

VI. CONCLUSIONS

We conducted a focus group with six software professionals
of NTT Data, a big IT service and consulting company, to
understand how software vulnerabilities are managed in the
software systems this company develops and/or maintains.

The company’s policy for managing software vulnerabilities
depends on clients’ needs (i.e., according to the context in
which the clients operate, they can require higher or lower
application security standards to be met) and the projects’ na-
ture (i.e., development of greenfield projects vs. maintenance
of existing ones). This finding confirms past ones (e.g., [3]):
developers are not averse to using security practices, they
simply follow company policies (agreed with clients).

The company mainly uses SAST tools, like SonarLint and
SonarQube, for detecting software vulnerabilities. These two
tools appear to be de-facto standards for NTT Data. This
explains the increasing researchers’ attention on SonarLint and
SonarQube (e.g., [17]–[21]).

DAST tools are less used than SAST tools due to their
higher execution costs and inferior ease to use. Clients need
to be aware of the primary role of DAST tools, and then take
a more informed decision about asking software companies to
use DAST tools in conjunction with SAST tools.

Finally, not all software vulnerabilities are fixed. For exam-
ple, the presence of some software vulnerabilities is tolerated
by the clients—once again, developers (and the companies
for which they work) are not averse to securing their code.
We recognize the management of software vulnerabilities in
open-source projects may be different, thus we advise future
research on this matter.

REFERENCES

[1] R. Shirey, “Internet security glossary, version 2,” Tech. Rep., 2007.
[2] eWeek. (2020) Heartbleed ssl flaw’s true cost will take time to tally.

[Online]. Available: http://archive.md/IMt3t
[3] H. Assal and S. Chiasson, “Think secure from the beginning: A survey

with software developers,” in Proceedings of CHI Conference on Human
Factors in Computing Systems. ACM, 2019, p. 1–13.

[4] M. Tahaei and K. Vaniea, “A survey on developer-centred security,”
in Proceedings of IEEE European Symposium on Security and Privacy
Workshops. IEEE, 2019, pp. 129–138.

[5] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer, 2012.

[6] C. Weir, S. Migues, M. Ware, and L. Williams, “Infiltrating security into
development: Exploring the world’s largest software security study,” in
Proceedings of ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
ACM, 2021, pp. 1326–1336.

[7] L. Braz and A. Bacchelli, “Software security during modern code review:
the developer’s perspective,” in Proceedings of ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, 2022, pp. 810–821.

[8] H. Palombo, A. Z. Tabari, D. Lende, J. Ligatti, and X. Ou, “An ethno-
graphic understanding of software (in) security and a co-creation model
to improve secure software development,” in Proceedings of USENIX
Conference on Usable Privacy and Security. USENIX Association,
2020, pp. 12:1–12:16.

[9] R. Widdows, T. A. Hensler, and M. H. Wyncott, “The focus group
interview: A method for assessing users’ evaluation of library service,”
College & Research Libraries, vol. 52, no. 4, pp. 352–359, 1991.

[10] J. Kontio, J. Bragge, and L. Lehtola, Guide to Advanced Empirical
Software Engineering. Springer, 2008, ch. The Focus Group Method
as an Empirical Tool in Software Engineering, pp. 93–116.

[11] J. Kontio, L. Lehtola, and J. Bragge, “Using the focus group method
in software engineering: obtaining practitioner and user experiences,”
in Proceedings of International Symposium on Empirical Software
Engineering. IEEE, 2004, pp. 271–280.

[12] L. Lehtola, M. Kauppinen, and S. Kujala, “Requirements prioritization
challenges in practice,” in Proceeding of Product Focused Software
Process Improvement. Springer, 2004, pp. 497–508.

http://archive.md/IMt3t


[13] G. Scanniello, S. Romano, D. Fucci, B. Turhan, and N. Juristo, “Stu-
dents’ and professionals’ perceptions of test-driven development: a focus
group study,” in Proceedings of Annual ACM Symposium on Applied
Computing. ACM, 2016, pp. 1422–1427.

[14] N. King, “Using templates in the thematic analysis of text,” Essential
Guide to Qualitative Methods in Organizational Research, pp. 257–270,
2004.

[15] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, pp. 77–101, 01 2006.

[16] S. Romano, D. Fucci, G. Scanniello, M. T. Baldassarre, B. Turhan, and
N. Juristo, “On researcher bias in software engineering experiments,”
Journal of Systems and Software, vol. 182, p. 111068, 2021.

[17] N. Saarimaki, M. T. Baldassarre, V. Lenarduzzi, and S. Romano, “On
the accuracy of sonarqube technical debt remediation time,” in In
proceedings of Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2019, pp. 317–324.

[18] M. T. Baldassarre, V. Lenarduzzi, S. Romano, and N. Saarimäki, “On
the diffuseness of technical debt items and accuracy of remediation time
when using sonarqube,” Inf. Softw. Technol., vol. 128, p. 106377, 2020.

[19] D. Pina, A. Goldman, and C. Seaman, “Sonarlizer xplorer: a tool to mine
github projects and identify technical debt items using sonarqube,” in
International Conference on Technical Debt. IEEE, 2022, pp. 71–75.

[20] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou, “How do developers fix issues and pay back technical debt in the
apache ecosystem?” in Proceedings of IEEE International Conference
on Software Analysis, Evolution and Reengineering. IEEE, 2018, pp.
153–163.

[21] S. Romano, F. Zampetti, M. T. Baldassarre, M. Di Penta, and G. Scan-
niello, “Do static analysis tools affect software quality when using test-
driven development?” in Proceedings of ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement. ACM,
2022, p. 80–91.

[22] US Department of Commerce, “The minimum elements for a software
bill of materials (SBOM),” http://archive.md/2023.04.18-062538/https:
//www.ntia.doc.gov/files/ntia/publications/sbom minimum elements
report.pdf, 2021.

[23] J. Langford, Focus groups: Supporting effective product development.
CRC press, 2002.

http://archive.md/2023.04.18-062538/https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
http://archive.md/2023.04.18-062538/https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
http://archive.md/2023.04.18-062538/https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

	Introduction
	Related Work
	The Focus Group
	Defining the research problem
	Planning and execution of the focus group
	Analysis

	Results
	Theme 1) Policy
	Theme 2) Instrumentation
	Theme 3: Resolution

	Discussion
	Overall Discussion, Implications, and Future Research Directions
	Threats to Validity

	Conclusions
	References

